, Volume 4, Issue 1, pp 35–65 | Cite as

Topology in Raster and Vector Representation

  • Stephan Winter
  • Andrew U. Frank


Egenhofer's nine-intersection, well-known for vector representations, is defined here on a raster, using a hybrid raster model, and then systematically transformed to yield functions which can be used in a convolution operation applied to a regular raster representation. Applying functions, the hybrid raster elements need not be stored. It becomes thus possible to determine the topological relation of two regions, given in raster representation, with the same reasoning as in vector representations. This contributes to the merging of raster and vector operations. It demonstrates how the same conceptual operations can be used for both representations, thus hiding in one more instance the difference between them.

vector/raster integration interoperability topology formal specification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Alexandroff. Elementary Concepts of Topology. Dover Publications, New York, USA, 1961.Google Scholar
  2. 2.
    D.H. Ballard and C.M. Brown. Computer Vision. Prentice Hall, Englewood Cliffs, NJ, 1982.Google Scholar
  3. 3.
    H. Bieri and I. Metz. “A Bintree Representation of Generalized Binary Digital Images,” in U. Eckhardt, A. HuÈ bler, W. Nagel, and G. Werner, (Eds.), Geometrical Problems of Image Processing, Akademie Verlag, Berlin, 72–77, 1991.Google Scholar
  4. 4.
    R. Bird. “Introduction to Functional Programming Using Haskell”. Series in Computer Science. Prentice Hall Europe, Hemel Hempstead, UK, 1998.Google Scholar
  5. 5.
    T. Bittner and A.U. Frank. “On Representing Geometries of Geographic Space,” in T.K. Poiker and N. Chrisman, (Eds.), 8th International Symposium on Spatial Data Handling, 111–122, Vancouver, 1998. International Geographical Union.Google Scholar
  6. 6.
    E. Clementini and P. Di Felice. “An Algebraic Model for Spatial Objects with Indeterminate Boundaries,” in P.A. Burrough and A.U. Frank, (Eds.), Geographic Objects with Indeterminate Boundaries, volume 2 of ESF GISDATA, 155–169, Taylor & Francis, 1996.Google Scholar
  7. 7.
    A.G. Cohn, B. Bennett, J. Goodday, and N. Gotts. “Qualitative Spatial Representation and Reasoning with the Region Connection Calculus,” Geoinformatica, Vol. 1(3):1–44, 1997.Google Scholar
  8. 8.
    H. Couclelis. “People Manipulate Objects (but Cultivate Fields): Beyond the Raster-Vector Debate in GIS,” in A.U. Frank, I. Campari, and U. Formentini, (Eds.), Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, volume 639 of Lecture Notes in Computer Science, 65–77, Springer-Verlag, Berlin, 1992.Google Scholar
  9. 9.
    C.R. Dyer, A. Rosenfeld, and H. Samet. “Region Representation: Boundary Codes from Quadtrees,” Communications of the ACM, Vol. 23(3):171–179, 1980.Google Scholar
  10. 10.
    M.J. Egenhofer. Spatial Query Languages. Ph.D. thesis, University of Maine, 1989.Google Scholar
  11. 11.
    M.J. Egenhofer. “Reasoning about Binary Topological Relations,” in O. Günther and H.-J. Schek, (Eds.), Advances in Spatial Databases (SSD '91), 143–160, Springer, 1991.Google Scholar
  12. 12.
    M.J. Egenhofer. “A Model for Detailed Binary Topological Relationships,” Geomatica, Vol. 47(3 & 4):261–273, 1993.Google Scholar
  13. 13.
    M.J. Egenhofer, E. Clementini, and P. di Felice. “Topological Relations between Regions with Holes,” International Journal of Geographical Information Systems, Vol. 8(2):129–142, 1994.Google Scholar
  14. 14.
    M.J. Egenhofer, A.U. Frank, and J.P. Jackson. “A Topological Data Model for Spatial Databases,” in A. Buchmann, O. Günther, T. R. Smith, and Y.-F. Wang, (Eds.), Design and Implementation of Large Spatial Databases, volume 409 of Lecture Notes in Computer Science, 271–286, Springer, New York, 1989.Google Scholar
  15. 15.
    M.J. Egenhofer and R.D. Franzosa. “Point-Set Topological Spatial Relations,” International Journal of Geographical Information Systems, Vol. 5(2):161–174, 1991.Google Scholar
  16. 16.
    M.J. Egenhofer and J.R. Herring. “A Mathematical Framework for the Definition of Topological Relationships,” in 4th International Symposium on Spatial Data Handling, 803–813, Zürich, 1990, International Geographical Union.Google Scholar
  17. 17.
    M.J. Egenhofer and D.M. Mark. “Modeling Conceptual Neighborhoods of Topological Line-Region Relations,” International Journal for Geographical Information Systems, Vol. 9(5):555–565, 1995.Google Scholar
  18. 18.
    M.J. Egenhofer and D.M. Mark. “Naive Geography,” in A.U. Frank and W. Kuhn, (Eds.), Spatial Information Theory, volume 988 of Lecture Notes in Computer Science, 1–15, Springer, Berlin, 1995.Google Scholar
  19. 19.
    M.J. Egenhofer and J. Sharma. “Topological Relations between Regions in IR2 and Z2,” in D. Abel and B. Ooi, (Eds.), Advances in Spatial Databases, volume 692 of Lecture Notes of Computer Science, 316–336, Springer, New York, 1993.Google Scholar
  20. 20.
    M.J. Egenhofer, J. Sharma, and D.M. Mark. “A Critical Comparison of the 4-Intersection and 9-Intersection Models for Spatial Relations: Formal Analysis,” in R.B. McMaster and M.P. Armstrong, (Eds.), Auto-Carto 11, 1–11, Minneapolis, Minnesota,1993. ASPRS/ACSM.Google Scholar
  21. 21.
    A.U. Frank. “Spatial Concepts, Geometric Data Models and Data Structures,” in D. Maguire, (Eds.), GIS Design Models and Functionality, Leicester, UK, 1990. Midlands Regional Research Laboratory, University of Leicester.Google Scholar
  22. 22.
    A.U. Frank. “Metamodels for Data Quality Description,” in R. Jeansoulin and M. Goodchild, (Eds.), Data Quality in Geographic Information: from Error to Uncertainty, 15–30. Editions Hermés, Paris, 1998.Google Scholar
  23. 23.
    M. Gahegan and R. Iverach. “A Hybrid Edge and Region Quadtree,” in T. K. Poiker and N. Chrisman, (Eds.), 8th International Symposium on Spatial Data Handling, 701–712, Vancouver, 1998. International Geographical Union.Google Scholar
  24. 24.
    A. Galton. “Towards a Qualitative Theory of Movement,” in A.U. Frank and W. Kuhn, (Eds.), Conference on Spatial Information Theory, volume 988 of Lecture Notes in Computer Science, 377–396, Berlin, 1995. Springer.Google Scholar
  25. 25.
    M.F. Goodchild. Geographical Data Modeling. Technical Report 90-11, National Center for Geographic Information and Analysis, 1990.Google Scholar
  26. 26.
    D. Hernàndez. Qualitative Representation of Spatial Knowledge, volume 804 of Lecture Notes in Artificial Intelligence. Springer, Berlin, 1994.Google Scholar
  27. 27.
    J.R. Herring. “Tigris: Topologically Integrated Geographic Information System,” in Auto-Carto 8, 282–291, Baltimore, 1987. ACSM-ASPRS.Google Scholar
  28. 28.
    J.R. Herring. “The Mathematical Modeling of Spatial and Non-Spatial Information in Geographic Information Systems,” in D.M. Mark and A.U. Frank, (Eds.), Cognitive and Linguistic Aspects of Geographic Space, volume 63 of Nato ASI Series D, 313–350, Kluwer, Dordrecht, 1991.Google Scholar
  29. 29.
    P. Hudak, J. Peterson, and J.H. Fasel. “A Gentle Introduction to Haskell,” Version 1.4. http://, Yale University, April 7, 1997.Google Scholar
  30. 30.
    T.Y. Kong and A. Rosenfeld. “Digital Topology: Introduction and Survey,” Computer Vision, Graphics, and Image Processing, Vol. 48:357–393, 1989.Google Scholar
  31. 31.
    V.A. Kovalevsky. “Finite Topology as Applied to Image Analysis,” Computer Vision, Graphics, and Image Processing, Vol. 46:141–161, 1989.Google Scholar
  32. 32.
    V.A. Kovalevsky. “A New Concept for Digital Geometry,” in O. Ying-Lie, A. Toet, D. Foster, H.J.A.M. Heijmans, and P. Meer, (Eds.), NATO Advanced Research Workshop Shape in Picture (1992). Springer, 1994.Google Scholar
  33. 33.
    D.M. Mark, D. Comas, M.J. Egenhofer, S.M. Freundschuh, M.D. Gould, and J. Nunes. “Evaluating and Refining Computational Models of Spatial Relations through Cross-Linguistic Human-Subjects Testing,” in A.U. Frank and W. Kuhn, (Eds.), Spatial Information Theory-A Theoretical Basis for GIS, volume 988 of Lecture Notes in Computer Science, 553–568. Springer, Berlin, 1995.Google Scholar
  34. 34.
    J. Nievergelt and P. S chorn. “Das RaÈ tsel der verzopften Geraden,” Informatik-Spektrum, Vol. 11:163–165, 1988.Google Scholar
  35. 35.
    OGC. OpenGIS Simple Features Specification for SQL. Technical Report, Open GIS Consortium, Inc., March 13, 1998.Google Scholar
  36. 36.
    J. Peterson and K. Hammond. Report on the Programming Language Haskell. haskell-report/haskell-report-1_4.pdf, Yale University, April 7, 1997.Google Scholar
  37. 37.
    D.A. Randell, Z. Cui, and A. Cohn. “A Spatial Logic Based on Regions and Connection,” in R. Brachmann, H. Levesque, and R. Reiter, (Eds.), Third International Conference on the Principles of Knowledge Representation and Reasoning, 165–176, Los Altos, CA, 1992. Morgan-Kaufmann.Google Scholar
  38. 38.
    Rational. Unified Modeling Language. Technical report, Rational Software Corp., 1996.Google Scholar
  39. 39.
    A. Rosenfeld and J.L. Pfaltz. “Sequential Operations in Digital Picture Processing,” J. Assoc. Comput. Mach., Vol. 13:471–494, 1966.Google Scholar
  40. 40.
    A. Rosenfeld. “Digital Topology,” Am. Math. Month., Vol. 86:621–630, 1979.Google Scholar
  41. 41.
    H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, Massachusetts, 1990.Google Scholar
  42. 42.
    J.L. Star, J.E. Estes, and F. Davis. Integration of Remote Sensing and Geographic Information Systems. Research initiative 12 closing report, NCGIA, 1995.Google Scholar
  43. 43.
    S. Thompson. Haskell-The Craft of Functional Programming. International Computer Science Series. Addison-Wesley, Harlow, UK, 1996.Google Scholar
  44. 44.
    W. Tobler. “Application of Image Processing Techniques to Map Processing,” in International Symposium on Spatial Data Handling, 140–145, Zurich, Switzerland, 1984.Google Scholar
  45. 45.
    S. Winter. “Topological Relations between Discrete Regions,” in M.J. Egenhofer and J.R. Herring, (Eds.), Advances in Spatial Databases, volume 951 of Lecture Notes in Computer Science, 310–327. Springer, Berlin, 1995.Google Scholar
  46. 46.
    S. Winter. “Bridging Vector and Raster Representation in GIS,” in R. Laurini, K. Makki, and N. Pissinou, (Eds.), Proceedings of the 6th International Symposium on Advances in Geographic Information Systems, 57–62, Washington, D.C., 1998. ACM Press.Google Scholar
  47. 47.
    S. Winter and T. Bittner. “Hierarchical Topological Reasoning with Vague Regions,” in W. Shi, M.F. Goodchild, and P.F. Fisher, (Eds.), Proceedings of the International Symposium on Spatial Data Quality, 555–565, Hong Kong, 1999. Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University.Google Scholar
  48. 48.
    M.F. Worboys. “Imprecision in Finite Resolution Spatial Data,” GeoInformatica, Vol. 2(3):257–279, 1998.Google Scholar
  49. 49.
    M.F. Worboys and P. Bofakos. “A Canonical Model for a Class of Areal Spatial Objects,” in D. Abel and B.C. Ooi, (Eds.), Advances in Spatial Databases, volume 692 of Lecture Notes in Computer Science, 36–52, Berlin, 1993. Springer.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Stephan Winter
    • 1
  • Andrew U. Frank
    • 2
  1. 1.Department of GeoinformationTechnical University ViennaViennaAustria
  2. 2.Department of GeoinformationTechnical University ViennaViennaAustria

Personalised recommendations