Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Revisiting Rademacher's Formula for the Partition Function p(n

  • 179 Accesses

  • 8 Citations

Abstract

We provide a new proof of Rademacher's celebrated exact formula for the partition function. Along the way we present a simple treatment of an integral which is ubiquitous in the theory of nonanalytic automorphic forms.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G.E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.

  2. 2.

    T. Apostol, Modular Functions and Dirichlet Series in Number Theory, 2nd edn., Springer-Verlag, New York, 1990. Graduate Texts in Math, Vol. 41.

  3. 3.

    S. Chowla and A. Selberg, "On Epstein's zeta-function," J. Reine und Angew. Math. 227 (1967) 86–110.

  4. 4.

    R. Dedekind, "Schreiben an Herrn Borchardt über die Theorie der elliptischen Modulfunktionen," J. Reine Angew. Math. 83 (1877) 265–292.

  5. 5.

    J.-M. Deshouillers and H. Iwaniec, "Kloosterman sums and Fourier coefficients of cusp forms," Invent. Math. 70 (1982) 219–288.

  6. 6.

    L. Euler, Introductio in Analysin Infinitorum, Marcum—Michaelem Bousquet, Lausannae, 1748.

  7. 7.

    G.H. Hardy and S. Ramanujan, "Asymptotic formulae in combinatory analysis," Proc. London Math. Soc. (2) 17 (1918) 75–115.

  8. 8.

    E. Hecke, "Theorie der Eisensteinschen Reihen höherer Stufe and ihre Anwendung auf Funktionentheorie und Arithmetik," in Mathematische Werke, Vandenhoeck und Ruprecht, Göttingen, 1959, pp. 461–486.

  9. 9.

    D. Hejhal, The Selberg Trace Formula for PSL(2, ℝ), Vol. 2, Springer-Verlag, Berlin, 1983. Springer Lecture Notes in Math., Vol. 1001.

  10. 10.

    H. Hida, Elementary Theory of L-functions and Eisenstein Series, Cambridge University Press, Cambridge, 1993. London Math. Soc. Student Texts, Vol. 26.

  11. 11.

    M. Knopp, "On the Fourier coefficients of small positive powers of ϑ(τ)," Invent. Math. 85 (1986) 165–183.

  12. 12.

    M. Knopp, "On the Fourier coefficients of cusp forms having small positive weight," Proceedings of Symposia in Pure Mathematics 49, Part 2 (1989) 111–127.

  13. 13.

    N.V. Kuznetsov, "Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture. Sums of Kloosterman sums," Math. USSR Sbornik 39 (1981) 299–342.

  14. 14.

    P.S. Laplace, Th´eorie Analytique des Probabilit´es, 1812.

  15. 15.

    H. Maass, Lectures on Modular Functions of One Complex Variable, revised edn., Springer-Verlag, Berlin, 1983. Distributed for the Tata Institute of Fundamental Research.

  16. 16.

    T. Miyake, Modular Forms, Springer-Verlag, Berlin, 1989.

  17. 17.

    Y. Motohashi, Spectral Theory of the Riemann Zeta-function, Cambridge University Press, Cambridge, 1997. Cambridge Tracts in Math., Vol. 127.

  18. 18.

    D. Niebur, "Automorphic integrals of arbitrary positive dimension and Poincaré series," Doctoral Dissertation, University of Wisconsin, Madison, 1968.

  19. 19.

    D. Niebur, "Construction of automorphic forms and integrals," Trans. Amer. Math. Soc. 191 (1974) 373–385.

  20. 20.

    W. Pribitkin, "The Fourier coefficients of modular forms and modular integrals having small positive weight," Doctoral Dissertation, Temple University, Philadelphia, 1995.

  21. 21.

    W. Pribitkin, "The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, I," Acta Arith. 91 (1999), 291–309.

  22. 22.

    W. Pribitkin, "The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II," Acta Arith. 93 (2000), 343–358.

  23. 23.

    H. Rademacher, "A convergent series for the partition function p(n)," Proc. Nat. Acad. Sci. U.S.A. 23 (1937) 78–84.

  24. 24.

    H. Rademacher, "On the partition function p(n)," Proc. London Math. Soc. (2) 43 (1937) 241–254.

  25. 25.

    H. Rademacher, "On the expansion of the partition function in a series," Ann. of Math. 44 (1943) 416–422.

  26. 26.

    R.A. Rankin, Modular Forms and Functions, Cambridge University Press, Cambridge, 1977.

  27. 27.

    B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, Berlin, 1974.

  28. 28.

    A. Selberg, "Harmonic Analysis," G¨ottingen Lectures, 1954.

  29. 29.

    A. Selberg, "Reflections around the Ramanujan centenary," in Collected Papers, Vol. I, Springer-Verlag, Berlin, 1989, pp. 695–706.

  30. 30.

    G. Shimura, "On certain zeta functions attached to two Hilbert modular forms, I, II," Annals of Math. 114 (1981) 127–164, 569 607.

  31. 31.

    C.L. Siegel, "Die Funktionalgleichungen einiger Dirichletscher Reihen," Math. Z. 63 (1956) 363–373.

  32. 32.

    C.L. Siegel, Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1980.

  33. 33.

    A. Terras, Harmonic Analysis on Symmetric Spaces and Applications I, Springer-Verlag, New York, 1985.

  34. 34.

    A. Weil, Elliptic Functions According to Eisenstein and Kronecker, Springer-Verlag, Berlin, 1976.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pribitkin, W.D.A. Revisiting Rademacher's Formula for the Partition Function p(n. The Ramanujan Journal 4, 455–467 (2000). https://doi.org/10.1023/A:1009828302300

Download citation

  • partitions
  • modular forms
  • Fourier coefficients