, Volume 5, Issue 4, pp 327–334 | Cite as


  • J. Christopher Beck
  • Andrew J. Davenport
  • Claude Le Pape
Editorial Introduction


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggoun, A. and Beldiceanu, N. (1993). Extending CHIP in order to solve complex scheduling and placement problems. Mathematical and Computer Modelling, 17: 57-73.Google Scholar
  2. 2.
    Applegate, D. and Cook, W. (1991). A computational study of the job-shop scheduling instance. ORSA Journal on Computing, 3: 149-156.Google Scholar
  3. 3.
    Beck, J. C., Davenport, A. J., Davis, E. D., and Fox, M. S. (1998). The ODO project: toward a unified basis for constraint-directed scheduling. Journal of Scheduling, 1(2): 89-125.Google Scholar
  4. 4.
    Beck, J. C., A. J. Davenport, and M. S. Fox. (1997). Five pitfalls of empirical scheduling research. In Proceedings of Principles and Practice of Constraint Programming, pages 390-404.Google Scholar
  5. 5.
    Burke, P. and Prosser, P. (1994). The distributed asynchronous scheduler. In M. Zweben and M. Fox (eds.), Intelligent Scheduling. Morgan Kaufmann Publishers, San Francisco, chap. 11, pp. 309-339.Google Scholar
  6. 6.
    Carlier, J. and Pinson, E. (1989). An algorithm for solving the job-shop problem. Management Science, 35(2): 164-176.Google Scholar
  7. 7.
    Caseau, Y. and Laburthe, F. (1995). Improving branch and bound for jobshop scheduling with constraint propagation. In Proceedings of the 8th Franco-Japanese Conference CCS'95.Google Scholar
  8. 8.
    Caseau, Y. and Laburthe, F. (1996). Cumulative scheduling with task intervals. In Proceedings of the Joint International Conference and Symposium on Logic Programming.Google Scholar
  9. 9.
    Cesta, A. and Oddi, A. (1996). Gaining efficiency and flexibility in the simple temporal problem. In L. Chittaro, S. Goodwin, H. Hamilton, and A. Montanari (eds.), Proceedings of the Third International Workshop on Temporal Representation and Reasoning (TIME-96). Los Alamitos, CA.Google Scholar
  10. 10.
    Collinot, A. and Le Pape, C. (1987). Controlling constraint propagation. In Proceedings of the Tenth International Joint Conference on Artificial Intelligence.Google Scholar
  11. 11.
    Dechter, R., Meiri, I., and Pearl, J. (1991). Temporal constraint networks. Artificial Intelligence, 49: 61-95.Google Scholar
  12. 12.
    Dorndorf, U. and Pesch, E. (1995). Evolution based learning in a job shop scheduling environment. Computers and Operations Research, 22(1): 25-40.Google Scholar
  13. 13.
    Erschler, J., Roubellat, F., and Vernhes, J. P. (1976). Finding some essential characteristics of the feasible solutions for a scheduling problem. Operations Research, 24: 772-782.Google Scholar
  14. 14.
    Erschler, J., Roubellat, F., and Vernhes, J. P. (1980). Characterising the set of feasible sequences for n jobs to be carried out on a single machine. European Journal of Operational Research, 4: 189-194.Google Scholar
  15. 15.
    Ford, Jr., L. R. (1956). Network flow theory. Technical report, Rand Corporation.Google Scholar
  16. 16.
    Fox, M. S. (1983). Constraint-directed search: a case study of job-shop scheduling. Ph.D. thesis, Carnegie Mellon University, Intelligent Systems Laboratory, The Robotics Institute, Pittsburgh, PA. CMU-RI-TR-85-7.Google Scholar
  17. 17.
    Fox, M. S. (1990). Constraint-guided scheduling-a short history of research at CMU. Computers in Industry, 14: 79-88.Google Scholar
  18. 18.
    Garey, M. R., and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NPCompleteness. W.H. Freeman and Company, New York.Google Scholar
  19. 19.
    Glover, F. (1989).Tabu search part I. Operations Research Society of America (ORSA) Journal on Computing, 1(3): 109-206.Google Scholar
  20. 20.
    Glover, F. (1990). Tabu search part II. Operations Research Society of America (ORSA) Journal on Computing, 2(1): 4-32.Google Scholar
  21. 21.
    Hooker, J. N. (1994). Needed: an empirical science of algorithms. Operations Research, 42: 201-212.Google Scholar
  22. 22.
    Kowalski, R. (1979). Algorithm D logic C control. Communications of the ACM, 22(7): 424-436.Google Scholar
  23. 23.
    Laarhoven, P. J. M., Aarts, E. H. L. and Lenstra, J. K. (1992). Job shop scheduling by simulated annealing. Operations Research, 40(1): 113-125.Google Scholar
  24. 24.
    Latombe, J. (1979). Failure processing in a system for designing complex assemblies. In Proceedings of the Sixth International Joint Conference on Artificial Intelligence.Google Scholar
  25. 25.
    Le Pape, C. (1988). Des syst`emes d'ordonnancement flexibles et opportunistes. Ph.D. thesis, University Paris XI.Google Scholar
  26. 26.
    Le Pape, C. (1994a). Constraint-based programming for scheduling: An historical perspective. In Working Papers of the Operations Research Seminar on Constraint Handling Techniques.Google Scholar
  27. 27.
    Le Pape, C. (1994b). Using a constraint-based scheduling library to solve a specific scheduling problem. In Proceedings of the AAAI-SIGMAN Workshop on Artificial Intelligence Approaches to Modelling and Scheduling Manufacturing Processes.Google Scholar
  28. 28.
    Le Pape, C. and Baptiste, P. (1996). Constraint propagation techniques for disjunctive scheduling: the preemptive case. In Proceedings of ECAI-96.Google Scholar
  29. 29.
    Le Pape, C. and Baptiste, P. (1997a). A constraint programming library for preemptive and non-preemptive scheduling. In Proceedings of the Third International Conference and Exhibition on the Practical Application of Constraint Technology, London, United Kingdom, 1997.Google Scholar
  30. 30.
    Le Pape, C. and Baptiste, P. (1997b). An experimental comparison of constraint-based algorithms for the preemptive job shop scheduling problem. In CP97 Workshop on Industrial Constraint-Directed Scheduling.Google Scholar
  31. 31.
    Little, J., Murty, K., Sweeney, D., and Karel, C. (1963). An algorithm for the traveling salesman problem. Operations Research, 11(6): 972-989.Google Scholar
  32. 32.
    Miyashita, K., and Sycara, K. (1995). CABINS:Aframework of knowledge acquisition and iterative revision for schedule improvement and reactive repair. Artificial Intelligence Journal, 76(1-2): 377-426.Google Scholar
  33. 33.
    Neiman, D. E., Hildum, D. W., Lesser, V. R., and Sandholm, T. W. (1994). Exploiting meta-level information in a distributed scheduling system. In Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), volume 1, pages 394-400.Google Scholar
  34. 34.
    Nowicki, E. and Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem. Management Science, 42(6): 797-813.Google Scholar
  35. 35.
    Nuijten,W. and Le Pape, C. (1998). Constraint-based job shop scheduling with ILOG scheduler. Journal of Heuristics, 3: 271-286.Google Scholar
  36. 36.
    Nuijten, W. P. M. (1994). Time and resource constrained scheduling: a constraint satisfaction approach. Ph.D. thesis, Department of Mathematics and Computing Science, Eindhoven University of Technology.Google Scholar
  37. 37.
    Sadeh, N. (1991). Lookahead techniques for micro-opportunistic job-shop scheduling. Ph.D. thesis, Carnegie-Mellon University. CMU-CS-91-102.Google Scholar
  38. 38.
    Sadeh, N., and Fox, M. S. (1989). Focus of attention in an activity-based scheduler. In Proceedings of the NASA Conference on Space Telerobotics.Google Scholar
  39. 39.
    Smith, S.F., Ow, P., Matthys, D., and Potvin, J. (1989). OPIS: An opportunistic factory scheduling system. In Proceedings of International Symposium for Computer Scientists.Google Scholar
  40. 40.
    Stallman, R. and Sussman, G. (1977). Forward reasoning and dependency-directed backtracking in a system for computer-aided circuit analysis. Artificial Intelligence, 9: 135-196.Google Scholar
  41. 41.
    Steele Jr., G. L. (1980). The definition and implementation of a computer programming language based on constraints. Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
  42. 42.
    Van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. MIT Press.Google Scholar
  43. 43.
    Zweben, M., Daun, B., Davis, E., and Deale, M. (1994). Scheduling and rescheduling with iterative repair. In M. Zweben and M. S. Fox (eds.), Intelligent Scheduling. Morgan Kaufmann Publishers, San Francisco, chap. 8, pp. 241-256.Google Scholar
  44. 44.
    Zweben, M., Davis, E., Daun, B., and Deale, M. (1993). Informedness vs. computational cost of heuristics in iterative repair scheduling. In Proceedings of IJCAI-93, pages 1416-1422.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • J. Christopher Beck
    • 1
  • Andrew J. Davenport
    • 2
  • Claude Le Pape
    • 3
  1. 1.ILOG S.A.France
  2. 2.Enterprise Integration LaboratoryUniversity of TorontoCanada
  3. 3.Bouygues TelecomFrance

Personalised recommendations