GeoInformatica

, Volume 4, Issue 1, pp 7–34 | Cite as

A Methodology for Spatial Consistency Improvement of Geographic Databases

  • Sylvie Servigne
  • Thierry Ubeda
  • Alain Puricelli
  • Robert Laurini
Article

Abstract

In any information system the reliability of any results of queries, analysis or reasoning, depends on data quality (positional accuracy, consistency and so on). In some cases, answers cannot be obtained due to a lack of information, whereas in other cases answers are wrong or not complete because of inconsistent data. In geographical information systems (GIS), data quality management has to handle the spatial features of objects, which brings specific problems. The goal of this paper is to describe a methodology for spatial consistency improvement of geographical data sets in vector format. It is based on errors survey and classification. Three kinds of errors are identified which lead to three kinds of consistency, namely structural consistency, geometric consistency and topo-semantic consistency. Each of them needs specific checking and correcting processes. All these processes are integrated in a general framework that is presented in this paper. An application of this framework to the Lyon Urban Community GIS (the SUR) is currently conducted; first results are presented.

error checking error correcting spatial consistency topological relation data quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Corbett. Cartographic data structures. Washington DC: US Census Bureau, 1979.Google Scholar
  2. 2.
    Z. Cui, A.G. Cohn, and D.A. Randell. “Qualitative and Topological Relationships in Spatial Databases,” in Proceedings of the Third Symposium on Large Spatial Databases, SSD'93, Singapore, June 23-25, Lecture Notes in Computer Science 692:296–315, 1993.Google Scholar
  3. 3.
    M.J. Egenhofer and J.R. Herring. “A Mathematical Framework for the Definition of Topological Relationships,” in Proceedings of the 4th International Symposium on Spatial Data Handling, SDH-90, Zurich, 803–813, 1990.Google Scholar
  4. 4.
    M.J. Egenhofer and J.R. Herring. Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases. Technical Report, Department of Surveying Engineering, University of Maine, Orono, 1991.Google Scholar
  5. 5.
    M.J. Egenhofer. “Reasoning about Binary Topological Relations,” in Proceedings of the Second Symposium on Large Spatial Databases, SSD'91, Zurich, Lecture Notes in Computer Science 525:143–159, 1991.Google Scholar
  6. 6.
    J. Egenhofer and R.D. Franzosa. International Journal of Geographical Information Systems, Vol. 5(2):161–174, 1991.Google Scholar
  7. 7.
    S. Faiz. Modélization, exploitation et visualization de l'information qualité dans les bases de données géographiques, Ph.D. thesis, University Paris Sud—Orsay, 1997.Google Scholar
  8. 8.
    T. Hadzilacos and N. Tryfona. “A Model for Expressing Topological Integrity Constraints in Georaphic Databases,” in Proceedings of Theories and Methods of Spatio-Temporal Reasoning, GIS-92, Pisa, 253–368, 1992.Google Scholar
  9. 9.
    D.P.W. Jayawardena and M.F. Worboys. “The Role of Triangulation in Spatial Data Handling,” Innovation in GIS, Vol. 2: Taylor & Francis, 7–17, 1995.Google Scholar
  10. 10.
    W. Kainz. “Logical Consistency,” in Elements of Spatial Data Quality, Elsevier Science, 109–138, 1995.Google Scholar
  11. 11.
    R. Laurini and D. Thompson. Fundamental of Spatial Information Systems. Academic Press, 1992.Google Scholar
  12. 12.
    J. Morrison, “Spatial data quality,” in Elements of spatial Data Quality, Elsevier Science, 1–12, 1995.Google Scholar
  13. 13.
    T. Peucker and N. Chrisman. “Cartographic Data Structures,” The American Cartographer, 55–69, 1975.Google Scholar
  14. 14.
    L. Plümer, “Achieving Integrity and Topology in Geographical Information Systems,” in Proceedings of the First International Conference on Geographic Information Systems in Urban Regional and Environmental Planning, Samos, GR, 45–60, 1996.Google Scholar
  15. 15.
    F.P. Preparata and M.L. Shamos.Computational Geometry: An Introduction, Springer Verlag New York, 1986.Google Scholar
  16. 16.
    F. Salge. “Semantic accuracy,” in Elements of spatial Data Quality, Elsevier Science, 139–152, 1995.Google Scholar
  17. 17.
    T. Ubeda and S. Servigne. “Capturing Spatial Object Characteristics for Correcting and Reasoning,” in Proceedings of Joint European Conference and Exhibition on Geographical Information, JEC-GI-96, Barcelona, Spain, 24–33, 1996.Google Scholar
  18. 18.
    T. Ubeda and S. Servigne. “Geometric and Topological Consistency of Spatial Data,” in Proceedings of the First International Conference on Geocomputation, Leeds, UK, 830–842, 1996.Google Scholar
  19. 19.
    T. Ubeda and M.J. Egenhofer. “Topological Error Correcting in GIS,” in Proceedings of the fifth international symposium on spatial databases, SSD-97, Berlin, Germany, 283–297, 1997.Google Scholar
  20. 20.
    H. Veregin and P. Hargitai. “An evaluation matrix for geographical data quality,” Elements of spatial DataQuality, Elsevier Science, 167–188, 1995.Google Scholar
  21. 21.
    M.F. Worboys. GIS A Computing Perspective, Taylor & Francis, 1995.Google Scholar
  22. 22.
    G. Zhang and J. Tulip. “An Algorithm for the Avoidance of sliver Polygons and Cluster in Spatial Overlays”, in Proceedings of the fourth international Symposium on Spatial Data Handling, SDH-90, Zurich, Switzerland, 141–150, 1991.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Sylvie Servigne
    • 1
  • Thierry Ubeda
    • 2
  • Alain Puricelli
    • 3
    • 4
  • Robert Laurini
    • 5
  1. 1.Laboratoire d'Inge´nierie des Syste`mes d'Information (LISI)Institut National des Sciences Applique´es de Lyon (INSA)Villeurbanne Cedex -France
  2. 2.Laboratoire d'Inge´nierie des Syste`mes d'Information (LISI)Institut National des Sciences Applique´es de Lyon (INSA)Villeurbanne Cedex -France
  3. 3.Laboratoire d'Inge´nierie des Syste`mes d'Information (LISI)Institut National des Sciences Applique´es de Lyon (INSA)Villeurbanne Cedex -France
  4. 4.Communaute´ Urbaine de LyonLe Grand LyonLyon Cedex 03
  5. 5.Laboratoire d'Inge´nierie des Syste`mes d'Information (LISI)Institut National des Sciences Applique´es de Lyon (INSA)Villeurbanne Cedex -France

Personalised recommendations