Plant Ecology

, Volume 144, Issue 1, pp 103–114 | Cite as

Effect of fire on hard-coated Cistaceae seed banks and its influence on techniques for quantifying seed banks

  • Pablo Ferrandis
  • José M. Herranz
  • Juan J. Martínez-Sánchez


The impact of fire on hard-coated Cistaceae (Halimium ocymoides, Cistus ladanifer, and C. salvifolius) soil seed banks in a Mediterranean 'maquis' shrubland, and its effect on seed germinability were studied. The study also contrasts the effectiveness of two widely used techniques for quantifying seed banks, the seedling emergence and the physical separation methods, in relation to fire. The null hypothesis that a massive enhancement of physically-dormant Cistaceae seed germination by fire would make use of the time-consuming physical separation technique unnecessary was tested. Fire reduced Cistaceae seed banks in the 0–2 cm deep soil layer by both seed fire-consumption and lethal temperatures, revealed by the significant decreasing of the seed bank density and by the increase of apparently-intact but soft-unviable seeds, respectively. In contrast, no damage was recorded in the 2–5 cm soil layer. A dramatic seed bank depletion (> 90%) in both soil layers was recorded one year after fire in the burnt area, coinciding with a significant increase of seedling density confined to the first post-fire year. The ecological consequences of this massive post-fire seed bank input are discussed. A germinability test revealed that germination of surviving Cistaceae seeds was significantly enhanced in all cases except for the C. salvifolious seed bank in the deeper soil layer. However, final germination levels (60–75%) did not correspond to the magnitude of seed bank depletion, especially for C. salvifolious, which suggests that other environmental factors not exclusively associated with fire may also be important in softening Cistaceae seeds. Germination enhancement by fire soil-heating was not high enough to reject the physical separation technique, at least in the deeper soil layer. The simultaneous use of both seedling emergence and physical separation is recommended for reliable seed bank estimates when a physically-dormant hard-seeded component can be expected in the soil, as in many Mediterranean ecosystems, regardless of fire occurrence.

Cistus Germinability Halimium Physical dormancy Physical separation method Seedling emergence method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auld, T. D. & O'Connell, M. A. 1991. Predicting patterns of post-fire germination in 35 eastern Australian Fabaceae. Austr. J. Ecol. 16: 53-70.Google Scholar
  2. Arianoutsou, M. & Margaris, N. S. 1981. Early stages of regeneration after fire in a phryganic ecosystem (east Mediterranean). I. Regeneration by seed germination. Biol. Ecol. Méditer. 8: 119-128.Google Scholar
  3. Baskin, J. M. & Baskin, C. C. 1989. Physiology of dormancy and germination in relation to seed bank ecology. Pp. 53-66. In: Leck, M. A., Thomas, V. T. & Simpson, R. L. (eds), Ecology of Soil Seed Banks. Academic Press, San Diego, California.Google Scholar
  4. Besnier, F. 1989. Semillas. Biología y Tecnología. Ed. Mundi-Prensa, Madrid, 635 pp.Google Scholar
  5. Christensen, N. L. & Muller, C. H. 1975. Effects of fire on factors controlling plant growth in Adenostoma Chaparral. Ecol. Monogr. 45: 26-55.Google Scholar
  6. Christensen, N. L. & Kimber, P. C. 1975. Effects of prescribed burning on the flora and fauna of south-west Australian forests. Porc. Ecol. Soc. Austr. 9: 85-106.Google Scholar
  7. Corral, R., Pérez-García, F. & Pita, J. M. 1989. Seed morphology and histology in four species of Cistus L. (Cistaceae). Phytomorphology 39: 75-80.Google Scholar
  8. Corral, R., Pita, J. M. & Pérez-García, F. 1990. Some aspects of seed germination in four species of Cistus L. Seed Technol. 18: 321-325.Google Scholar
  9. De Bano, L. F.; Dunn, P. H. & Conrad, C. E. 1977. Fire's effect on physical and chemical properties of chaparral soils. Pp. 65-74. In: Mooney, H. H. & Conrad, C.E. (eds), Symposium on Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems. U.S.D.A. Forest Service General Technical Report WO-3, Washington.Google Scholar
  10. Ferrandis, P. 1996. Efecto del fuego sobre el banco de semillas del suelo en diferentes ecosistemas mediterráneos de Castilla-La Mancha. Ph. D. Thesis. University of Murcia, Spain.Google Scholar
  11. Ferrandis, P., Martínez-Sánchez, J. J. & Herranz, J. M. 1998. Fire impact on a maquis soil seed bank in Cabañeros National Park (central Spain). Israel J. Plant Sci. In press.Google Scholar
  12. Gaussen, H. 1970. Carte de la végétation de la région méditerranéenne. Notice explicative. UNESCO/FAO, Paris. 90 pp.Google Scholar
  13. González-Rabanal, F. & Casal, M. 1995. Effect of high temperatures and ash on germination of ten species from gorse shrubland. Vegetatio 116: 123-131.Google Scholar
  14. Gross, K. L. 1990. A comparison of methods for estimating seed numbers in the soil. J. Ecol. 78: 1079-1093.Google Scholar
  15. Heywood, V. H. 1985. Las Plantas con Flores. Ed. Reverté, Barcelona. 332 pp.Google Scholar
  16. Juhren, M. C. 1966. Ecological observations on Cistus in the Mediterranean vegetation. Forest Sci. 12: 415-426.Google Scholar
  17. Kuhnholtz-Lordat, G. 1938. La Terre Incendiée. Essai d'Agronomie Comparée. Maison Carrée, Nimes, 361 pp.Google Scholar
  18. Manders, P. T. 1990. Quantifying soil seed banks: A comparison of physical separation and seedling emergence techniques in Cape fynbos and forest vegetation. South Afr. J. Ecol. 1: 27-30.Google Scholar
  19. Naveh, Z. 1974. Effect of fire in Mediterranean Region. Pp. 401-434. In: Kozlowski, T. T. & Ahlgren, C. E. (eds), Fire and Ecosystems. Academic Press New York.Google Scholar
  20. NÚñez-Olivera, E., Martínez-Abaigar, J., Escudero, J. C. & García-Novo, F. 1995. A comparative study of Cistus ladanifer shrublands in Extremadura (CW Spain) on the basis of species composition and cover. Vegetatio 117: 123-132.Google Scholar
  21. Purdie, R. W. 1977. Early stages of regeneration after burning in dry sclerophyll vegetation. II. Regeneration by seed germination. Austr. J. Bot. 25: 35-46.Google Scholar
  22. Rolston, M. P. 1978. Water impermeable seed dormancy. Bot. Rev. 44: 365-396.Google Scholar
  23. Ter Heerdt, G. N. J., Verweij, G. L., Bekker, R. M. & Bakker, J. P. 1996. An improved method for seed-bank analysis: seedling emergence after removing the soil by sieving. Funct. Ecol. 10: 144-151.Google Scholar
  24. Thanos, C. A. & Georghiou, K. 1988. Ecophisiology of firestimulated seed germination in Cistus incanus subsp. creticus (L.) Heywood and C. salvifolius L. Plant, Cell, Env. 11: 841-849.Google Scholar
  25. Thanos, C. A., Georghiou, K., Kadis, C. & Pantazi, C. 1992. Cistaceae: a plant family with hard seeds. Israel J. Bot. 41: 251-263.Google Scholar
  26. Thompson, K. & Booth, R. E. 1993. Dormancy breaking. Pp. 187-190. In: G. A. F. Hendry & J. P. Grime(eds), Methods in Comparative Plant Ecology. A Laboratory Manual. Chapman & Hall, London.Google Scholar
  27. Thompson, K., Bakker, J. & Bekker, R. 1997. The Soil Seed Banks of North West Europe: Methodology, Density and Longevity. Cambridge University Press, United Kingdom. 276 pp.Google Scholar
  28. Trabaud, L. 1970. Quelques valeurs et observations sur la phytodynamique des surfaces incendiées dans le Bas-Languedoc. Nat. Monspel. Ser. Biol. 21: 231-242.Google Scholar
  29. Trabaud, L. 1980. Influence du feu sur les semences enfouies dans les couches superficielles du sol d'une garrigue de chêne kermes. Natur. Monspel. Ser. Biol. 39: 1-12.Google Scholar
  30. Trabaud, L. 1992. Influence du régime des feux sur les modifi-cations a court terme et la estabilite a long terme de la flore d'une garrigue de Quercus coccifera. Rev. Ecol. (Terre Vie) 47: 229-251.Google Scholar
  31. Trabaud, L. 1995. Modalités de germination des cistes et des pins méditerranéens et colonisation des sites perturbées. Rev. Ecol. (Terre Vie) 50: 3-14.Google Scholar
  32. Trabaud, L. & Oustric, J. 1989. Comparaison des stratégies de régénération après incendie chez deux espèces de cistes. Rev. Ecol. (Terre Vie) 44: 3-13.Google Scholar
  33. Troumbis, A. & Trabaud, L. 1986. Comparison of reproductive biological attributes of two Cistus species. Acta Oecol. (Oecol.Plant.) 7: 235-250.Google Scholar
  34. Troumbis, A. & Trabaud, L. 1987. Dynamique de la banque de graines de deux espéces de cistes dans les maquis grecs. Acta Oecol. (Oecol.Plant.) 8: 167-179.Google Scholar
  35. Tutin, T. G., Heywood, V. H., Burges, N. A.; Moore, D. M., Valiente, D. H., Walters, S. M. & Webb, D. A. 1964-1980. Flora Europaea. Cambridge University Press, Cambridge.Google Scholar
  36. Valbuena, L., Tárrega, R. & Luís, E. 1992. Influence of heat on seed germination of Cistus laurifolius and Cistus ladanifer. Int. J. Wildland Fire 2: 15-20.Google Scholar
  37. Vuillemin, J. & Bulard, C. 1981. Ecophysiologie de la germination de Cistus albidus L. et Cistus monspeliensis L. Nat. Monspel., Sér. Bot. 46: 1-11.Google Scholar
  38. Zar, J. H. 1984. Biostatistical Analysis. 2nd edition. Prentice-Hall, New Jersey, 718 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Pablo Ferrandis
    • 1
  • José M. Herranz
    • 1
  • Juan J. Martínez-Sánchez
    • 1
  1. 1.Department Plant Production and Agricultural Technology, E.T.S. Ingenieros AgrónomosUniversity of Castilla-La ManchaAlbaceteSpain

Personalised recommendations