Plant Ecology

, Volume 143, Issue 1, pp 29–37 | Cite as

Plant community dynamics in a calcareous grassland under climate change manipulations

  • Marcelo Sternberg
  • Valerie K. Brown
  • Gregory J. Masters
  • Ian P. Clarke


This study investigates the effects of field manipulations of local climate to determine the potential impact of climate change on plant community dynamics in a calcareous grassland. The experimental site is located in a grassland at the Wytham estate, Oxfordshire, UK. The one hectare study area is within a 10 ha abandoned arable field on Jurassic corallian limestone. Two climate change scenarios were used: warmer winters with increased summer rainfall and warmer winters with summer drought. Plant cover and species richness were significantly increased in plots receiving supplemented summer rainfall, while the amount of litter was significantly reduced. Litter formation was significantly increased by winter warming and drought. The responses of the plant community to the climate manipulations were related to the life-history attributes of the dominant species. Seedling recruitment was limited by microsite availability, which also varied in the different climate manipulations. The results are discussed in terms of successional dynamics. They suggest that warmer winters may delay succession, as gap formation in the sward will provide sites for colonisation of annuals, thereby enabling their persistence in the sward. Under wetter conditions during summer, perennial grasses tend to close the sward, thereby inhibiting the establishment of later successional species.

Climate change Life-history traits Plant succession Seedling recruitment Warming Water relations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerley, D. D. & Bazzaz, F. A. 1995. Plant growth and reproduction along CO2gradients: non-linear responses and implications for community change. Global Change Biol. 1: 199-207.Google Scholar
  2. Aguilera, M. O. & Lauenroth, W. K. 1995. Influence of gap disturbance and types of microsites on seedling establishment in Bouteloua gracilis. J. Ecol. 83: 87-97.Google Scholar
  3. Alward, R. D, Detling, J. K. & Milchunas, D. G. 1999. Grassland vegetation changes and nocturnal global warming. Science 283: 229-231.PubMedGoogle Scholar
  4. Baker, J. T., Allen Jr., L. H., Boote, K. J. & Pickering, N. B. 1997. Rice responses to drought under carbon dioxide enrichment. 1. Growth and yield. Global Change Biology 3: 119-128.Google Scholar
  5. Bazzaz, F. A. 1990. The response of natural ecosystems to the rising global CO2 levels. Ann. Rev. Ecol. Syst. 21: 167-196.CrossRefGoogle Scholar
  6. Bazzaz, F. A. & Carlson, R. W. 1984. The response of plants to elevated CO2. Competition among an assemblage of annuals at two levels of soil moisture. Oecologia 64: 196-198.Google Scholar
  7. Beerling, D. J. & Woodward, F. I. 1994. Climate change and the British scene. J. Ecol. 82: 391-397.Google Scholar
  8. Bosy, J. L. & Reader, R. J. 1995. Mechanisms under the suppression of forb seedling emergence by grass (Poa pratensis) litter. Functional Ecology 9: 635-639.Google Scholar
  9. Buckland, S. M. 1994. An investigation into the responses of limestone grassland to climatic manipulation and species introductions. Ph.D. Thesis, University of Sheffield, UK.Google Scholar
  10. Campbell, B. D, Laing, W. A, Greer, D. H., Crush, J. R., Clark, H., Williamson, D. Y & Given, M. D. J. 1995. Variation in grassland populations and species and the implications for community responses to elevated CO2. J. Biogeogr. 22: 315-322.Google Scholar
  11. Campbell, B. D., Stattford Smith, D. M. & Mckeon, G. M. 1997. Elevated CO2 and water supply interactions in grasslands: a pastures and rangelands management perspective. Global Change Biol. 3:177-188.Google Scholar
  12. CCIRG (Climate Change Impacts Review Group), 1991. The potential effects of climate change in the United Kingdom. HMSO. London.Google Scholar
  13. CCIRG (Climate Change Impacts Review Group), 1996. Review of the potential impacts of climate change in the United Kingdom. HMSO, London.Google Scholar
  14. Chapin, F. S. III, Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J. & Laundre, J. A. 1995. Responses of arctic tundra to experimental and observed changes in climate. Ecology 76: 694-711.Google Scholar
  15. Connell, J. H. & Slatyer, R. O. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111: 1119-1144.CrossRefGoogle Scholar
  16. Couteaux, M-M., Bottner, P. & Berg, B. 1995. Litter decomposition, climate and litter quality. Trends Ecol. Evol. 10(2): 63-66.Google Scholar
  17. Cummins, C. P., Beran, M. A., Bell, B. G. & Oliver, H. R. 1995. The TIGER programme. J. Biogeogr. 22: 897-905.Google Scholar
  18. Facelli, J. M. & Pickett, S. T. A. 1991. Plant litter: light interception and effects on an old-field plant community. Ecology 72: 1024-1031.Google Scholar
  19. Fajer, E. D., Bowers, M. D. & Bazzaz, F. A. 1989. The effects of enriched carbon dioxide atmospheres on plant-insect interactions. Science 243: 1198-1200.Google Scholar
  20. Farnsworth, E. J., Nunez-Farfan, J., Careaga, S. A. & Bazzaz, F. A. 1995. Phenology and growth of three temperate forest life forms in response to artificial soil warming. J. Ecol. 83: 967-977.Google Scholar
  21. Field, C., Chapin III, F. S., Matson, P. A. & Mooney, H. A. 1992. Responses of terrestrial ecosystems to the changing atmosphere: a resource-based approach. Ann. Rev. Ecol. Syst. 23: 201-236.Google Scholar
  22. Grace, J. B. 1990. On the relationship between plant traits and competitive abilities. Pp. 51-65. In: Grace, J. B. & Tilman, D. (eds), Perspectives on plant competition. Academic Press. New York.Google Scholar
  23. Gibson, C. W. D. 1986. Management history in relation to changes in the flora of different habitats on an Oxfordshire estate, England. Biol. Cons 38: 217-232.Google Scholar
  24. Graves, J. & Reavey, D. 1996. Global environmental change. Plants, animals and communities. Longman Group Ltd., Essex.Google Scholar
  25. Grime, J. P. 1979. Plant strategies and vegetation processes. John Wiley & Sons, Chichester.Google Scholar
  26. Gross, K. L. & Werner, P. A. 1982. Colonisation abilities of ‘biennial’ plant species in relation to ground cover: implications for their distributions in a successional sere. Ecology 63: 921-931.Google Scholar
  27. Harper, J. L. 1977. Population biology of plants. Academic Press, London.Google Scholar
  28. Harte, J. & Shaw, R. 1995. Shifting dominance within a Montane vegetation community: results of a climate-warming experiment. Science 267: 876-880.Google Scholar
  29. Hillier, S. H., Sutton, F. & Grime, J. P. 1994. A new technique for experimental manipulation of temperature in plant communities. Funct. Ecol. 8: 755-762.Google Scholar
  30. Hirschel, G., Korner, C. & Arnone, J. A. 1997. Will rising CO2 affect leaf litter quality and in situ decomposition rates in native plant communities? Oecologia 110: 387-392.CrossRefGoogle Scholar
  31. Hobbie, S. E., Jensen, D. B. & Chapin, F. S., III. 1993. Resource supply and disturbance as controls over present and future plant diversity. Pp. 385-407. In: Schulze, E. D. & Mooney, H. A. (eds), Ecosystem function of biodiversity, Springer-Verlag, Berlin.Google Scholar
  32. Hobbie, S. E. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol. Monogr. 66: 503-522.Google Scholar
  33. Hobbie, S. E. & Chapin, F. S., III. 1998. The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79: 1526-1544.Google Scholar
  34. Houghton, J. T., Meira Filho, L. G., Bruce, J., Lee, H., Callander, B. A., Haites, E., Harris, E., Kattenberg, A. & Maskell, K. 1996. Climate change 1995. The science of climate change. Cambridge University Press, Cambridge.Google Scholar
  35. Jamieson, N., Barraclough, D., Unkovich, M. & Monaghan, R. 1998. Soil N dynamics in a natural calcareous grassland under a changing climate. Biol. Fertility Soils 27: 267-273.Google Scholar
  36. Lincoln, D. E., Fajer, E. D. & Johnson, R. H. 1993. Plant-insect herbivore interactions in elevated CO2 environments. Trends Ecol. Evol. 8: 64-68.Google Scholar
  37. Lukewille, A. & Wright, R. F. 1997. Experimentally increased soil temperature causes release of nitrogen at a boreal forest catchment in southern Norway. Global Change Biol. 3: 13-21.Google Scholar
  38. MacDonald, G. J. 1990. Global climate change. Pp. 1-96. In: Mac-Donald, G. J. & Sertorio, L. (eds), Global climate and ecosystem change. Plenum Press, New York.Google Scholar
  39. Masters, G. J., Brown, V. K., Clarke, I. P., Whittaker, J. B., Hollier, J. A. 1998. Direct and indirect effects of climate change on insect herbivores: Auchenorrhyncha (Homoptera). Ecol. Entomol. 23: 45-52.Google Scholar
  40. Mitchell, J. F. B., Mananbe, S., Meleshko, V. & Tokioka, T. 1990. Climate change. The IPCC scientific assessment. Pp. 131-172. In: Houghton, J. T, Jenkins, G. J. & Ephraums, J. J.(eds), Cambridge University Press, Cambridge.Google Scholar
  41. Noble, I. R. & Slatyer, R. O. 1980. The use of vital attributes to predict successional changes in plant communities subjects to recurrent disturbance. Vegetatio 43: 5-21.Google Scholar
  42. Pickett, S. T. A., Collins, S. L. & Armesto, J. J. 1987. Models, mechanisms and pathways of succession. Bot. Rev. 53: 335-371.Google Scholar
  43. Polley, N.W., Johnson, H. B., Mayeux, H. S. & Tischler, C. R. 1996. Impacts of rising CO2 concentration on water use efficiency of woody grassland invaders. Proceedings: Shrubland ecosystem dynamics in a changing environment. Las Cruces, New Mexico. USDA Forest Service 338: 189-194.Google Scholar
  44. Ross, M. A. & Harper, J. L. 1972. Occupation of biological space during seedling establishment. J. Ecol. 60: 77-88.Google Scholar
  45. Sokal, R. R. & Rohlf, F. J. 1995. Biometry: the principles and practice of statistics in biological research. W.H. Freeman and Co., New York.Google Scholar
  46. Spring, G. M., Priestman, G. H. & Grime, J. P. 1996. A new field technique for elevating carbon dioxide levels in climate change experiments. Funct. Ecol. 10: 541-545.Google Scholar
  47. Stace, C. A. 1991. New flora of the British Isles. Cambridge University Press, Cambridge.Google Scholar
  48. Sternberg, M. 1994. Early successional pathways after disturbance with herbicide in herbaceous communities in young planted forest in the Judean Mountains, Israel. Ph.D. thesis. The Hebrew University of Jerusalem, Jerusalem.Google Scholar
  49. Tilman, D. 1982. Resource competition and community structure. Princeton University Press, Princeton, NJ.Google Scholar
  50. Tilman, D. & Wedin, D. 1991. Plant traits and resource reduction for five grasses growing on a nitrogen gradient. Ecology 72: 685-700.Google Scholar
  51. Tutin, T. G. 1980. Umbellifers of the British Isles. B.S.B.I. Handbook No. 2. London.Google Scholar
  52. Wigley, T. M. L. & Raper, S. C. B. 1992. Implications for climate and sea level of revised IPCC emissions scenarios. Nature 357: 293-300.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Marcelo Sternberg
    • 1
  • Valerie K. Brown
    • 1
  • Gregory J. Masters
    • 1
  • Ian P. Clarke
    • 1
  1. 1.CABI Bioscience: Environment, UK Centre (Ascot)Silwood Park, Ascot, BerksUK

Personalised recommendations