GeoInformatica

, Volume 3, Issue 3, pp 269–296 | Cite as

Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases

  • Martin Erwig
  • Ralf Hartmut Gu¨ting
  • Markus Schneider
  • Michalis Vazirgiannis
Article

Abstract

Spatio-temporal databases deal with geometries changing over time. In general, geometries cannot only change in discrete steps, but continuously, and we are talking about moving objects. If only the position in space of an object is relevant, then moving point is a basic abstraction; if also the extent is of interest, then the moving region abstraction captures moving as well as growing or shrinking regions. We propose a new line of research where moving points and moving regions are viewed as 3-D (2-D space+time) or higher-dimensional entities whose structure and behavior is captured by modeling them as abstract data types. Such types can be integrated as base (attribute) data types into relational, object-oriented, or other DBMS data models; they can be implemented as data blades, cartridges, etc. for extensible DBMSs. We expect these spatio-temporal data types to play a similarly fundamental role for spatio-temporal databases as spatial data types have played for spatial databases. The paper explains the approach and discusses several fundamental issues and questions related to it that need to be clarified before delving into specific designs of spatio- temporal algebras.

data modeling spatio-temporal moving objects data types algebra query language 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Albers and T. Roos. “Voronoi Diagrams of Moving Points in Higher Dimensional Spaces,” 3rd Scandinavian Workshop on Algorithm Theory (SWAT'92), LNCS Vol. 621:399-409, 1992.Google Scholar
  2. 2.
    K. Al-Taha, R.T. Snodgrass, and M.D. Soo. “Bibliography on Spatio-Temporal Databases,” ACM SIGMOD Record, Vol. 22:59-67, 1994.Google Scholar
  3. 3.
    A. Belussi, E. Bertino, and B. Catania. “Manipulating Spatial Data in Constraint Databases,” Proc. of the 5th Intl. Symposium on Large Spatial Databases 115-141, Berlin, 1997.Google Scholar
  4. 4.
    M.H. Böhlen and C. Jensen. Seamless Integration of Time into SQL. Dept. of Computer Science, Aalborg University, Technical Report R-96-49, 1996.Google Scholar
  5. 5.
    U. Basoglu and J. Morrison. The Efficient Hierarchical Data Structure for the U.S. Historical Boundary File. Harward Papers on GIS, vol. 4, Addison-Wesley, Reading, MA 1978.Google Scholar
  6. 6.
    J. Clifford and A. Croker. “The Historical Relational Data Model (HRDM) and Algebra Based on Lifespans,” Proc. 3rd Intl. Conf. on Data Engineering, Los Angeles, CA, 1987, 528-537.Google Scholar
  7. 7.
    J. Chomicki and P.Z. Revesz. “Constraint-Based Interoperability of Spatiotemporal Databases,” Proc. of the 5th Intl. Symposium on Large Spatial Databases, 142-161, Berlin, 1997.Google Scholar
  8. 8.
    C. Claramunt and M. Thériault. “Managing Time in GIS: An Event-Oriented Approach”. Recent Advances in Temporal Databases, Springer-Verlag, 23-42, 1995.Google Scholar
  9. 9.
    H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I. Springer: Berlin, 1985.Google Scholar
  10. 10.
    J.-J. Fu and R.C.T. Lee. “Voronoi Diagrams of Moving Points in the Plane,” Int. Journal of Computational Geometry and Applications, Vol. 1(1):23-32, 1991.Google Scholar
  11. 11.
    S.K. Gadia. “A Homogeneous Relational Model and Query Languages for Temporal Databases,” ACM Transactions on Database Systems, Vol. 13:418-448, 1988.Google Scholar
  12. 12.
    R.H. Güting. “Second-Order Signature: A Tool for Specifying Data Models, Query Processing, and Optimization,” Proc. ACM SIGMOD Conf. 277-286. Washington, 1993Google Scholar
  13. 13.
    R.H. Güting. “An Introduction to Spatial Database Systems,” VLDB Journal, Vol. 4:357-399, 1994.Google Scholar
  14. 14.
    R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen, N. Lorentzos, M. Schneider, and M. Vazirgiannis. A Foundation for Representing and Querying Moving Objects. FernUniversität Hagen, Informatik-Report 238, 1998.Google Scholar
  15. 15.
    S.K. Gadia, V. Chopra, and U.S. Tim. “An SQL-Like Seamless Query of Spatio-Temporal Data,” Int. Workshop on an Infrastructure for Temporal Databases, Q-1-Q-20, 1993.Google Scholar
  16. 16.
    L. Guibas, J.S.B. Mitchell, and T. Roos. “Voronoi Diagrams of Moving Points in the Plane,” 17th Workshop on Graph-Theoretic Concepts in Computer Science, LNCS Vol. 570: 113-125, 1991.Google Scholar
  17. 17.
    R.H. Güting, Th. de Ridder, and M. Schneider. “Implementation of the ROSE Algebra: Efficient Algorithms for Realm-Based Spatial Data Types,” Proc. of the 4th Intl. Symposium on Large Spatial Databases, 216-239. Portland, August 1995.Google Scholar
  18. 18.
    S. Grumbach, P. Rigaux, and L. Segoufin. “The DEDALE System for Complex Spatial Queries,” Proc. ACM SIGMOD Conf., Seattle, 1998, 213-224.Google Scholar
  19. 19.
    S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin. “DEDALE, A Spatial Constraint Database,” Proc. Intl. Workshop on Database Programming Languages, 1997.Google Scholar
  20. 20.
    R.H. Güting and M. Schneider. “Realm-Based Spatial Data Types: The ROSE Algebra,” VLDB Journal, Vol. 4:100-143, 1995.Google Scholar
  21. 21.
    S.K. Gadia and J.H. Vaishnav. “A Query Language for a Homogeneous Temporal Database,” Proc. ACM Conf. on Principles of Database Systems, 51-56, 1985.Google Scholar
  22. 22.
    T. Kämpke. “Storing and Retrieving Changes in a Sequence of Polygons,” Int. Journal of Geographical Information Systems, Vol. 8(6):493-513, 1994.Google Scholar
  23. 23.
    P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. “Constraint Query Languages,” Proc. 19th Symposium on Principles of Database Systems, 299-313, 1990.Google Scholar
  24. 24.
    P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. “Constraint Query Languages,” Journal of Computer and System Sciences, Vol. 51:25-52, 1995.Google Scholar
  25. 25.
    N. Lorentzos. The Interval-Extended Relational Model and Its Application to Valid-Time Databases. In J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass (eds.). Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings Publishing Company, 1993 [38]}, 67-91.Google Scholar
  26. 26.
    M. Nabil, A. Ngu, and J. Shepherd. “Modeling Moving Objects in Multimedia Database”. Proc. of the 5th Conf. on Database Systems for Advanced Applications, Melbourne, Australia, 1997.Google Scholar
  27. 27.
    D.J. Peuquet and N. Duan. “An Event-Based Spatiotemporal Data Model (ESTDM) for Temporal Analysis of Geographical Data,” Int. Journal of Geographical Information Systems, Vol. 9(1):7-24, 1995.Google Scholar
  28. 28.
    F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, 1985.Google Scholar
  29. 29.
    J. Paredaens, J. Van den Bussche, and D. Van Gucht. “Towards a Theory of Spatial Database Queries,” Proc. Symposium on Principles of Database Systems, Minneapolis, 279-288, 1994.Google Scholar
  30. 30.
    S. Price. “Modeling the Temporal Element in Land Information Systems,” Int. Journal of Geographical Information Systems, Vol. 3(3):233-243, 1989.Google Scholar
  31. 31.
    H. Raafat, Z. Yang, and D. Gauthier. “Relational Spatial Topologies for Historical Geographical Information,” Int. Journal of Geographical Information Systems, Vol. 8(2):163-173, 1994.Google Scholar
  32. 32.
    R. Snodgrass. “The Temporal Query Language TQuel,” ACM Transactions on Database Systems, Vol. 12:247-298, 1987.Google Scholar
  33. 33.
    R. Snodgrass and I. Ahn. “A Taxonomy of Time in Databases,” Proc. ACM SIGMOD Conf., Austin, Texas, 1985, 236-246.Google Scholar
  34. 34.
    P. Svensson and Z. Huang. “Geo-SAL: A Query Language for Spatial Data Analysis,” Proc. 2nd Intl. Symp. on Large Spatial Databases, Zürich, Switzerland, 1991, 119-140.Google Scholar
  35. 35.
    A. Segev and A. Shoshani. “Logical Modeling of Temporal Data,” Proc. ACM SIGMOD Conf., San Francisco, 454-466, 1987.Google Scholar
  36. 36.
    M. Scholl and A. Voisard. “Thematic Map Modeling,” Proc. 1st Intl. Symp. on Large Spatial Databases, Santa Barbara, 167-190, 1989.Google Scholar
  37. 37.
    A.P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. “Modeling and Querying Moving Objects,” Proc. IEEE Intl. Conf. on Data Engineering, (Birmingham, U.K., 1997), 422-432.Google Scholar
  38. 38.
    A.U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass (eds.). Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings Publishing Company, 1993.Google Scholar
  39. 39.
    L. Vandeurzen, M. Gyssens, and D. Van Gucht. “On the Desirability and Limitations of Linear Spatial Database Models,” Proc. Intl. Symp. on Large Spatial Databases, Portland, Maine, 14-28, 1995.Google Scholar
  40. 40.
    M. Vazirgiannis, Y. Theodoridis, and T. Sellis. Spatio-Temporal Composition and Indexing for Large Multimedia Applications. To appear in Multimedia Systems, 1997.Google Scholar
  41. 41.
    M.F. Worboys. “A Unified Model for Spatial and Temporal Information,” The Computer Journal, Vol. 37(1):27-34, 1994.Google Scholar
  42. 42.
    T.S. Yeh and B. de Cambray. “Time as a Geometric Dimension for Modeling the Evolution of Entities: A 3-D Approach,” 2nd Int. Conf. on Integrating GIS and Environmental Modeling, 1993.Google Scholar
  43. 43.
    T.S. Yeh and B. de Cambray. “Modeling Highly Variable Spatio-Temporal Data,” 6th AustraliAsian Database Conf., 221-230, 1995.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Martin Erwig
    • 1
  • Ralf Hartmut Gu¨ting
    • 1
  • Markus Schneider
    • 1
  • Michalis Vazirgiannis
    • 1
    • 2
  1. 1.Praktische Informatik IVFernuniversita¨t HagenHagenGermany
  2. 2.Computer Science Division, Dept. of Electr. and Comp. Engineering, National TechUniversity of AthensZographou, AthensGreece

Personalised recommendations