Nutrient Cycling in Agroecosystems

, Volume 57, Issue 1, pp 33–46 | Cite as

The N-cycle as determined by intensive agriculture – examples from central Europe and China

  • Jörg RichterEmail author
  • Marco Roelcke


Using a scientific assessment concept of sustainability in crop-production based on the entropy production minimization principle of thermodynamics, formation and non-use of soluble and volatile (by-)products of the nutrient cycles within the system are interpreted as indicators or measures of the low efficiency/sustainability of recent forms of intensive agriculture. The simultaneous high energy input in modern crop production systems further shows the difference between these and quasi-stationary natural systems with maximum bioproduction having minimum energy dissipation and entropy production. Using balance sheets and dynamic approaches, the practical implications regarding the nitrogen cycle in central Europe (FR Germany) and China are exemplified and discussed. The average N balance of arable systems in Germany shows surplus N amounts of 110–130 kg N ha-1 yr-1. A high N immobilization in accordance with deepened top soil layers has governed N balances in Germany since about 1960. In China Nbalance surpluses in intensive agricultural (double-cropping) systems on the southern edge of the Loess Plateau now reach 125–230 kg N ha-1 yr-1. In field experiments, mineral N contents in the profiles (0–1.2 m depth) were 72–342 and 78–108 kg ha-1 at harvest of summer maize and winter wheat, respectively. In the Taihu region in eastern China, surpluses in the N balance (rice-wheat double cropping) amount to 217–335 kg N ha-1 yr-1. Nmin contents in the 0–0.9 m profiles of between 50 and 100 kg N ha-1 were frequently found after winter wheat harvest. In two separate investigations of ground and well water samples in China, nitrate contents exceeded the critical WHO value for drinking water in 38–50% of the locations investigated.

gaseous N losses N-cycle N fertilization nitrate leaching sustainability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addiscott TM (1995) Entropy and sustainability. Eur J Soil Sci 46: 161–168Google Scholar
  2. Bach M (1987) Die potentielle Nitrat-Belastung des Sickerwassers durch die Landwirtschaft in der Bundesrepublik Deutschland. Göttinger Bodenkundl. Ber. 93, Göttingen, GermanyGoogle Scholar
  3. Bertilsson G (1992) Environmental consequences of different farming systems using good agricultural practices. In: Proc. of an Intern. Conf. of the Fertilizer Society, 27 pp. Cambridge, UKGoogle Scholar
  4. BMU (Bundesministerium für Umwelt, Natur, Reaktorsicherheit) (1993) Klimaschutz in Deutschland – Nationalberichte der Bundesregierung für die Bundesrepublik Deutschland. Bonn, GermanyGoogle Scholar
  5. Bouwman AF (1990) Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: Bouwman AF (ed) Soils and the Greenhouse Effect, pp 61–127. Wiley, New YorkGoogle Scholar
  6. Bouwman AF (1996) Direct emission of nitrous oxide from agricultural soils. Nutr Cycling Agroecosyst 46: 53–70Google Scholar
  7. Chen GX, Huang GH, Huang B, Yu KW, Wu J & Xu H (1997) Nitrous oxide and methane emissions from soil-plant systems. Nutr Cycling Agroecosyst 49: 41–45Google Scholar
  8. Chinese Agricultural Yearbook (1997) Agricultural Publishing House, Beijing, ChinaGoogle Scholar
  9. Guo YG & Bradshaw AD (1993) The flow of nutrients and energy through a Chinese farming system. J Appl Ecol 30: 86–94Google Scholar
  10. Ingwersen J (1994) N2O-Emissionen aus Katalysatorfahrzeugen – Eine Bilanz für die BRD. Study report, Institute of Geography and Geoecology, TU Carolo-Wilhelmina, BraunschweigGoogle Scholar
  11. Isermann, K & R (1996) Böden mit Nährstoffen verarmen, anreichern/ abreichern, nachhaltig optimieren. Agrarbündnis: Der kritische Agrarbericht (in German)Google Scholar
  12. King FH (1911) Farmers of forty centuries or permanent agriculture in China, Korea and Japan. German translation of first edition (Madison, Wis., 1911), 1984. Georg E. Siebeneicher, Neu-Ulm und MünchenGoogle Scholar
  13. Kolenbrander GJ (1981) Leaching of nitrogen in agriculture. In: Brogan JC (ed) Nitrogen Losses and Surface Run-Off, pp 199–216. Nijhoff-Junk, Den HaagGoogle Scholar
  14. Li CS (2000) Modeling nitrogen biochemistry in soils. Nutr Cycling Agroecosyst: in pressGoogle Scholar
  15. Li SX, Cun DG, Gao YJ, He HX & Li SQ (1993) Mineral nitrogen introduced into soil by precipitation on Loess Plateau. Agri Res Arid Areas 11 (Suppl.): 83–92 (In Chinese)Google Scholar
  16. Ma LS & Qian MR (1987) Nitrate and nitrite pollution in water bodies in Tai-hu region. Environ Sci 8 (2): 60–65 (In Chinese)Google Scholar
  17. Nieder R, Scheithauer U & Richter J (1993) Dynamics of nitrogen after deeper tillage in arable loess soils of West Germany. Biol Fert Soils 16: 45–51Google Scholar
  18. Nieder R, Kersebaum KC & Richter J (1995) Significance of nitrate leaching and long term N immobilization after deepening the plough layer for the N regime of arable soils in N.W. Germany. Plant Soil 173: 167–175Google Scholar
  19. Quideau SA & Bockheim JG (1996) Vegetation and cropping effects on pedogenic processes in a sandy prairie soil. Soil Sci Soc Am J: 60: 536–545Google Scholar
  20. Rees RM, Roelcke M, Li SX, Wang XQ, Li SQ, Stockdale EA, Mc-Taggart IP, Smith KA & Richter J (1997) The effect of fertilizer placement on nitrogen uptake and yield of wheat and maize in Chinese loess soils. Nutr Cycling Agroecosyst 47: 81–91Google Scholar
  21. Richter J (1986) Der Boden als Reaktor, Enke-Verlag, Stuttgart; engl. (1987) The Soil as a Reactor. pp 5f. Catena, Cremlingen, GermanyGoogle Scholar
  22. Richter J, Nuske A, Habenicht W & Bauer A (1982) Optimized N-mineralization parameters of Löss-soils from incubation experiments. Plant Soil 68: 375–388Google Scholar
  23. Richter J, Nordmeyer H und Kersebaum KC (1984) Zur Aussagesicherheit der Nmin-Methode. Ztschr. für Acker-und Pflanzenbau 153: 285–296Google Scholar
  24. Richter J, Kersebaum KC & Utermann J (1988) Modelling of the nitrogen regime of arable field soils for consultation purposes. In: Jenkinson DS & Smith KA (eds) Proc. EEC-Workshop Nitrogen Efficiency in Agricultural Soils, pp 371–383. Elsevier Applied Science, London and New YorkGoogle Scholar
  25. Richter J & Benbi DK (1996) Modeling of nitrogen transformations and translocations. Plant Soil 181: 109–121Google Scholar
  26. Roelcke M (1994) Die Ammoniak-Volatilisation nach Ausbringung von Mineraldünger-Stickstoff in carbonatreichen chinesischen Löß -Ackerböden. Ph.D. dissertation, Braunschweig Technical University. In: Göttinger Beiträge zur Land-und Forstwirtschaft in den Tropen und Subtropen 92, Verlag Erich Goltze, Göttingen, GermanyGoogle Scholar
  27. Roelcke M, Han Y, Li SX & Richter J (1996) Laboratory measurements and simulations of ammonia volatilization from urea applied to calcareous Chinese loess soils. Plant Soil 181: 123–129Google Scholar
  28. Roelcke M, Han Y, Schleef KH, Zhu JG, Liu G, Cai ZC, Isermeyer F & Richter J (1998) Ecological and agro-economical aspects of nitrogen pollution in an intensive cropping system in eastern China. In: El Bassam N, Behl RK & Prochnow B (eds) Sustainable Agriculture for Food, Energy and Industry: Strategies Towards Achievement. Vol. 1, pp 418–426. James & James (Science Publishers) Ltd, LondonGoogle Scholar
  29. Roelcke M, Rees RM, Li SX & Richter J (2000) Studies of the nitrogen cycle on the southern edge of the Chinese Loess Plateau. In: Laflen J, Huang C & Tian J (eds) Proceedings of Conference Soil Erosion and Dryland Farming. Xi'an, China, Sept. 1997. Chapter 12. CRC Press, New York.Google Scholar
  30. Scheffer-Schachtschabel (1989) Lehrbuch der Bodenkunde, 359 pp. Enke-Verlag, Stuttgart, GermanyGoogle Scholar
  31. Schön M, Walz R, Angerer G, Bätcher K, Böhm E, Hillenbrand T, Hiessl H & Reichert J (1993) Emissionen der Treibhausgase Distickstoffoxid und Methan in Deutschland, pp 93–121. Erich Schmidt Verlag, UBA-FB BerlinGoogle Scholar
  32. Stewart WDP, Preston T, Rai AN & Rowell P (1983) Nitrogen cycling. In: Lee JA, McNeill S & Rorison IH (eds) Nitrogen as an Ecological Factor, p 1. Blackwell Scientific Publications, OxfordGoogle Scholar
  33. Tsuruta H, Kanda K & Hirose T (1997) Nitrous oxide emissions from a rice paddy field in Japan. Nutr Cycl Agroecosyst 49: 51–58Google Scholar
  34. Ulrich B (1986) Stability, Elasticity and Resilience of Terrestrial Ecosystems under the Aspect of Matter Balance. In: Schulze ED & Zwölfer H (eds) Potentials and Limitations of Ecosystem Analysis. Springer, HeidelbergGoogle Scholar
  35. White ID, Mottershead DN & Harrison SJ (1984) Environmental Systems pp 440f. George Allen & Unwin, LondonGoogle Scholar
  36. Zhang SL, Cai GX, Wang XZ, Xu YH, Zhu ZL & Freney JR (1992) Losses of urea-nitrogen applied to maize grown on a calcareous fluvo-aquic soil in North China Plain. Pedosphere 2: 171–178Google Scholar
  37. Zhang WL, Stuetzel H & Kolbe H (1998) Strategies to reduce ground water pollution from nitrogen fertilization in intensive cropping area of China. In: El Bassam N, Behl RK & Prochnow B (eds) Sustainable Agriculture for Food, Energy and Industry: Strategies Towards Achievement. Vol. 1, pp 354–358. James & James (Science Publishers) Ltd, LondonGoogle Scholar
  38. Zhu ZL & Wen QX (1992) Nitrogen in soils of China. Jiangsu Science and Technology Publishing House, Nanjing, China (in Chinese)Google Scholar
  39. Zucconi F (1993) Allelopathies and biological degradation in agricultural soils: an introduction to the problem of soil sickness and other soil-born diseases. Acta Horticulturae 324: 11–21Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  1. 1.Institute of Geography and GeoecologyTechnical University Carolo-Wilhelmina BraunschweigBraunschweigGermany
  2. 2.Institute of Geography and GeoecologyTechnical University Carolo-Wilhelmina BraunschweigBraunschweigGermany

Personalised recommendations