Nutrient Cycling in Agroecosystems

, Volume 48, Issue 1–2, pp 105–114 | Cite as

N2O and CH4 emissions from fertilized agricultural soils in southwest France

  • C. Jambert
  • R. Delmas
  • D. Serça
  • L. Thouron
  • L. Labroue
  • L. Delprat


Emissions of nitrogen compounds from heavily fertilized and irrigated maize fields have been studied in the Southwest of France, over an annual cultivation cycle. Strong nitrous oxide emissions from denitrification were observed after application of nitrogen fertilizer. Flux intensity appears to be stimulated by rain or irrigation. Emission algorithms, taking into account both nitrogen input and soil water content were established on the basis of the experimental data set. They allowed us to estimate annual nitrogen loss in the form of nitrous oxide modulated by rainfall. Production of methane is observed at the level of the water table under anoxic conditions. Nevertheless, the net flux between soil and atmosphere is negative for most of the time. When methane is produced, fluxes were very low due to methane oxidation in the soil surface layer.

agriculture fertilizer methane nitrous oxide soil water content 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arrouays, D., J. Baledan, A. Mariotti and C. Girardin, 1995, Modeling organic carbon turnover in cleared temperate soil converted to maize cropping, by using C13 natural abundance measurements, Plant and Soil, 173, pp. 191–196.Google Scholar
  2. Born, M., H. Dörr, and I. Levin, Methane consumption in aerated soils of the temperate zone, Tellus, 42 B, 2–8, 1990.Google Scholar
  3. Bouwman, A. F., Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: A. F. Bouwman (Ed.), Soils and the Greenhouse Effect, pp. 61–127, Wiley and Sons, Chichester, 1990.Google Scholar
  4. Bouwman, A. F., I. Fung, E. Matthews and J. John, Global analysis of the potential N2O production in natural soils. Glob. Biogeochem. Cyc., 7, 557–597, 1993.Google Scholar
  5. Bouwman, A. F., Compilation of a global inventory of emissions of nitrous oxide, Ph.D. thesis Wageningen, 1995.Google Scholar
  6. Bronson, K. F., A. R. Mosier, and S. R. Bishnoi, Nitrous oxide emissions in irrigated corn as affected by encapsulated calcium carbide and nitrapyrin, Soil Sci. Am. J., 56, 161–165, 1992.Google Scholar
  7. Cicerone, R. J., and R. S. Oremland, Biogeochemical aspects of atmospheric methane, Glob. Biogeochem. Cyc., 2, 299–337, 1988.Google Scholar
  8. Crutzen, P. J., and D. H. Ehhalt, Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer, Ambio, 6, 112–117, 1977.Google Scholar
  9. Davidson, E. A., Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: J. E. Rogers and W. B. Whitman (Eds.), Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes. American Society of Microbiology, Washington DC, pp. 219–235, 1991.Google Scholar
  10. Delmas, R. A., A. Marenco, J. P. Tathy, B. Cros, and J. G. R. Baudet, Sources and sinks of methane in the African savannah, CH4 emissions from biomass burning, J. Geophys. Res., 96, 7287–7299, 1992.Google Scholar
  11. Delprat, L., P. Chassin, M. Linère and C. Jambert, Characterization of dissolved organic carbon in cleared forest soils converted to maize cultivation, submitted to European Journal of Agronomy, 1996.Google Scholar
  12. Dörr, H., L. Katruff and I. Levin, Soil texture parametrisation of the methane uptake in aerated soils, Chemosphere, vol. 26, pp. 697–714, 1993.Google Scholar
  13. Eichner, M. J., Nitrous oxide emissions from fertilized soils: Summary of available data. J. Environ. Qual., 19, pp. 272–280, 1990.Google Scholar
  14. Fung, I., J. John, J. Lerner, E. Matthews; M. Prather, L. P. Steele, and P. J. Fraser, Three dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, pp. 13,033–13,065, 1991.Google Scholar
  15. Goulding, K. W. T., B. W. Hütsch, C. P. Webster, T. W. Willison, and D. S. Powlson, The effect of agriculture on methane oxidation in soil, Phil. Trans. R. Soc. Lond. A., 351, 313–325, 1995.Google Scholar
  16. Granli, T. and O. C. Bøckman, Nitrous oxide from agriculture, Norwegian Journal of Agricultural Sciences, 12, 1994.Google Scholar
  17. IPCC, Climate Change 1992. The supplementary report to the IPCC Scientific Assessment. J. T. Houghton, B. A. Callander & S. K. Varney (Eds.), Cambridge University Press, Cambridge, 1992.Google Scholar
  18. IPCC, Climate Change 1994. J.T. Houghton, L.G. Meira Filho, J. Bruce Hoensung Lee, B.A. Callander, E. Haites, N. Harris & K. Maskell (Eds.), Cambridge University Press, Cambridge, 1995.Google Scholar
  19. Jambert, C., R. A. Delmas, L. Labroue, and P. Chassin, Nitrogen compound emission from fertilized soils in a maize field pine tree forest agrosystem in the Southwest of France, J. Geophys. Res., 99, pp. 16,523–16,530, 1994.Google Scholar
  20. Kalhil, M. A. K., and R. A. Rasmussen, Constraints on the global sources of methane and an analysis of recent budgets, Tellus, 42B, pp. 229–236, 1990.Google Scholar
  21. Labroue, L., R. A. Delmas, D. Serça and J. Dagnac, La pollution nitratée des nappes phréatiques, facteur de pollution atmosphérique, Comptes Rendus de l'Académie des Sciences de Paris, 313, série III, pp. 119–124, 1991.Google Scholar
  22. Linn, D. M. and J. W. Doran, Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J., 48, pp. 1267–1272, 1984.Google Scholar
  23. Magalhaes, A. M. T., P. M. Chong and W. M. Strong, Effect of nitrapyrin on nitrous oxide emission from fallow soils fertilized with anhydrous ammonia. Fert. Res., 5, pp. 411–421, 1984.Google Scholar
  24. Minami, K., Nitrification inhibitors on emission of N2O from soils, Proceedings of CH4 and N2O workshop, Tsukuba (Japan), March 25–26, 1992.Google Scholar
  25. Mosier, A. R., Nitrous oxide emission s from agricultural soils. In: A. R. Van Amstel (ed.), Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control Proceedings. National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, pp. 273–275, 1993.Google Scholar
  26. Nesbit, S. P., and G. A. Breitenbeck, A laboratory study of factors influencing methane uptake by soils, Agric. Ecosys. Env., 41, pp. 39–54, 1992.Google Scholar
  27. Parton, W. J., A. R. Mosier, D. S. Ojima, D. W. Valentine, D. S. Schimel, K. Weier, and A. E. Kulmala, Generalized model for N2 and N2O production from nitrification and denitrification, Global Biogeochemical Cycles, vol. 10,No 3, pp. 401–412, 1996.Google Scholar
  28. Plenet, D., Fonctionnement des cultures de maïs sous contrainte azotée. Détermination et application d'un indice de nutrition. Ph.D. Thesis INPL, 31 mai 1995.Google Scholar
  29. Serça, D., R. A. Delmas, C. Jambert and L. Labroue, Emissions of nitrogen oxides from equatorial rainforest in central Africa: origin and regulation of NO emissions from soil, Tellus, 46B, pp. 243–254, 1994.Google Scholar
  30. Skopp, J., D. M. Jawson and J. W. Doran, Steady state aerobic microbial activity as a function of soil water content, Soil Sci. Soc. Am. J., 54, pp. 1619–1625, 1990.Google Scholar
  31. Striegl, R. G., Diffusional limits to the consumption of atmospheric methane by soils, Chemosphere, vol. 26, pp. 715–720, 1993.Google Scholar
  32. Warneck, P., Chemistry of the natural atmosphere, Academic Press, London, 41, 1988.Google Scholar
  33. Weier K. L., J. W. Doran, J. F. Power & D. T. Walters, Denitrification and dinitrogen/nitrous oxide ratio as affected by soil water, available carbon and nitrate. Soil Sci. Soc. Am. J., 57, pp. 66–72, 1993.Google Scholar
  34. Wuebbles, D. J. and J. S. Tamaresis, The role of methane in the global environment. In: M. A. K. Khalil (Ed.), Atmospheric Methane: Sources, Sinks, and Role in Global Change, pp. 469–513, 1993.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • C. Jambert
    • 1
  • R. Delmas
    • 1
  • D. Serça
    • 1
  • L. Thouron
    • 1
  • L. Labroue
    • 1
  • L. Delprat
    • 2
  1. 1.Laboratoire d'Aérologie (UMR CNRS-UPS 5560), O.M.P.ToulouseFrance
  2. 2.Station d'Agronomie, INRAVillenave d'Ornon CedexFrance

Personalised recommendations