Spatial patterns of Mexican pine-oak forests under different recent fire regimes

  • 194 Accesses

  • 46 Citations


Patterns of spatial arrangement, tree density, and species composition were compared in three unharvested pine-oak forests under different recent fire regimes: (1) an uninterrupted frequent fire regime, (2) fire exclusion, and (3) fire exclusion followed by the return of fire. Regeneration was dense and highly aggregated at all sites but the frequent-fire overstory was random to uniform in spatial distribution and relatively open while the fire-excluded sites had clumped overstory trees with a high density of smaller trees. Dominance by sprouting species was greatest at the fire-excluded sites. Mortality was spatially aggregated at all sites, consistent both with thinning by fire and density-dependent mortality, but competitive self-thinning appeared insufficient to counteract the increased tree density without fire. The return of fire after 29 years of exclusion reduced tree density but left overstory trees aggregated and led to vigorous oak and alder sprouting. Frequent fire disturbance is considered essential to maintain open pine forests; fire exclusion with or without subsequent fire appears to lead to denser forests dominated by smaller trees of sprouting species.

This is a preview of subscription content, log in to check access.


  1. Barton, A. M. 1995. Fire adaptations in pines and oaks: tree population responses to fire suppression in Arizona’s Madrean forests. Pp. 159-163 in Brown, J. K., Mutch, R. W., Spoon, C. W., and Wakimoto, R. H. (tech. coords.), Proceedings: Symposium on Fire in Wilderness and Park Management. USDA Forest Service General Technical Report INT-GTR-320, Ogden, UT.

  2. Biodiversity Support Program. 1995. A Regional Analysis of Geographic Priorities for Biodiversity Conservation in Latin America and the Caribbean. World Wildlife Fund, Washington D. C.

  3. Biondi, F., Myers, D. E. & Avery, C. C. 1994. Geostatistically modeling stem size and increment in an old-growth forest. Can. J. Forest Res. 24: 1354-1368.

  4. Carpenter, S. R. 1990. Large-scale perturbations: opportunities for innovation. Ecology 71(6): 2038-2043.

  5. Cooper, C. F. 1960. Changes in vegetation, structure, and growth of southwestern pine forests since white settlement. Ecology 42: 493-499.

  6. Cooper, C. F. 1961. Pattern in ponderosa pine forests. Ecology 42(3): 493-499.

  7. Covington, W. W. & Sackett, S. S. 1984. The effect of a prescribed burn in southwestern ponderosa pine on organic matter and nutrients in woody debris and forest floor. Forest Sci. 30: 183-192.

  8. Covington, W.W., Everett, R. L., Steele, R.W., Irwin, L. I., Daer, T. A. & Auclair, A. N. D. 1994. Historical and anticipated changes in forest ecosystems of the Inland West of the United States. J. Sustainable Forestry 2: 13-63.

  9. Covington, W. W., Fulé, P. Z., Moore, M. M., Hart, S. C., Kolb, T. E., Mast, J. N., Sackett, S. S. & Wagner M. R. 1997. Restoration of ecosystem health in southwestern ponderosa pine forests. J. Forestry 95(4): 23-29.

  10. Diggle, P. J. 1983. Statistical Analysis of Spatial Point Patterns. Academic Press, London.

  11. Duncan, R. P. 1990. Spatial Analysis Programmes. University of Canterbury, Christchurch, New Zealand.

  12. Duncan, R. P. 1991. Competition and the coexistence of species in a mixed podocarp stand. J. Ecology 79: 1073-1084.

  13. Fulé, P. Z. & Covington, W. W. 1996. Changing fire regimes in Mexican pine forests: ecological and management implications. J. Forestry 94(10): 33-38.

  14. Fulé, P. Z. & Covington, W. W. 1997. Fire regimes and forest structure in the Sierra Madre Occidental, Durango, Mexico. Acta Botanica Mexicana. Accepted

  15. Glitzenstein, J. S., Platt, W. J. & Streng, D. R. 1995. Effects of fire regime and habitat on tree dynamics in north Florida longleaf pine savannas. Ecol. Monographs 65(4): 441-476.

  16. González Elizondo, M., González Elizondo, S. & Herrera Arrieta, Y. 1991. Listados Floristicos de México. IX. Flora de Durango. Instituto de Biología, Universidad Nacional Autónoma de México, D. F. México.

  17. Guizar Nolazco, E., Benítez Paredes, A. & Bravo Bolaños, O. 1992. La Vegetación de la Unidad de Conservación y Desarrollo Forestal ‘Topia’, Durango. Universidad Autónoma Chapingo, División de Ciencias Forestales, Chapingo, México.

  18. Haase, P. 1995. Spatial pattern analysis in ecology based on Ripley’s K-function: introduction and methods of edge correction. J. Veg. Sci. 6: 575-582.

  19. Holling, C. S. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol. Monographs 62: 447-502.

  20. Jenkins, S. E. & Rebertus, A. J. 1994. Spatial demography of an oak savanna in the Ozarks. Pp. 107-111. In: Fralisch, J. S., Anderson, R. C. & Ebinger, J. E. (eds), Proceedings of the North American Savannas and Barrens Conference. Illinois State University, Normal, IL.

  21. Kenkel, N. C. 1988. Pattern of self-thinning in jack pine: testing the random mortality hypothesis. Ecology 69(4): 1017-1024.

  22. Leopold, A. 1937. Conservationist in Mexico. Am. Forests 37: 118-120, 146.

  23. McCune, B. 1988. Ecological diversity in North American pines. Am. J. Bot. 75(3): 353-368.

  24. Minnich, R. A., Barbour, M. G., Burk, J. H. & Fernau R. F. 1995. Sixty years of change in Californian conifer forests of the Sna Bernadino Mountains. Cons. Biol. 9(4): 902-914.

  25. Peterson, C. J. & Squiers, E. R. 1995. An unexpected change in spatial pattern across 10 years in an aspen-white-pine forest. J. Ecol. 83: 847-855.

  26. Platt, W. J., Evans, G. W. & Rathbun, S. L. 1988. The population dynamics of a long-lived conifer (Pinus palustris). Am. Naturalist 131(4): 491-525.

  27. Rebertus, A. J., Williamson, G. B. & Moser, E. B. 1989a. Longleaf pine pyrogenicity and turkey oak mortality in Florida xeric sandhills. Ecology 70(1): 60-70.

  28. Rebertus, A. J., Williamson, G. B. & Moser, E. B. 1989b. Fire induced changes in Quercus laevis spatial pattern in Florida sandhills. J. Ecol. 77: 638-650.

  29. Rebertus, A. J., Williamson, G. B. latt, W. J. 1994. Impact of temporal variation in fire regime on savanna oaks and pines. Pp. 215-225. In: Proceedings of the Tall Timbers Fire Ecology Conference, No. 18. Tall Timbers Research Station, Tallahassee, FL.

  30. Ripley, B. D. 1981. Spatial Statistics. JohnWiley & Sons, New York.

  31. Sackett, S. S., Haase, S. M. & Harrington, M. G. 1996. Lessons learned from fire use for restoring southwestern ponderosa pine ecosystems. Pp. 53-60. In: Covington, W. & Wagner, P. K. (tech. coords.), Conference on Adaptive Ecosystem Restoration and Management: Restoration of Cordilleran Conifer Landscapes of North America. USDA Forest Service General Technical Report RM-GTR-278, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO.

  32. Sterner, R. W., Ribic, C. A. & Schatz, G. E. 1986. Testing for life historical changes in spatial patterns of four tropical tree species. J. Ecol. 74: 621-633.

  33. Weaver, H. 1943. Fire as an ecological and silvicultural factor in the ponderosa pine region of the Pacific Slope. J. Forestry 41(1): 7-15.

  34. West, P. W. 1984. Inter-tree competition and small-scale pattern in monoculture of Eucalyptus obliquaL’Herit. Australian J. Ecol. 9: 405-411.

  35. White, A. S. 1985. Presettlement regeneration patterns in a southwestern ponderosa pine stand. Ecology 66(2): 589-594.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fulé, P.Z., Wallace Covington, W. Spatial patterns of Mexican pine-oak forests under different recent fire regimes. Plant Ecology 134, 197–209 (1998).

Download citation

  • Alder
  • Fire
  • Long-needled pines
  • Madrone
  • Mexico
  • Oak
  • Sierra Madre Occidental
  • Spatial pattern