Plant Ecology

, Volume 138, Issue 1, pp 17–26 | Cite as

Seed germination and seedling performance of two Mediterranean tree species, holm oak (shape Quercus ilex L.) and Aleppo pine (shape Pinus halepensis Mill.): a multifactor experimental approach

  • Maria José Broncano
  • Miquel Riba
  • Javier Retana


A two-level multifactor experimental approach was used to compare seed germination and seedling performance of two Mediterranean tree species: the early successional Aleppo pine (Pinus halepensis Mill.) and the late successional holm oak (Quercus ilex L.). In a first experiment germination rate was evaluated under the combined effects of shade, nitrogen availability, and pine or holm oak leaf litter. In a second experiment we tested for the effects of shade, nutrient availability, and litter type on seedling survival, growth and biomass allocation. Holm oak showed higher germination rates under shaded than under unshaded conditions, while Aleppo pine showed no differences between shaded and unshaded conditions. Nitrogen availability and litter type had no significant effect on germination of either species. Both species showed increased RGR, but also higher mortality rates, when grown in an enriched nutrient environment. While Aleppo pine showed no differences in RGR and mortality rate under different shading levels, RGR decreased and mortality increased for holm oak in full light. Increased radiation decreased LAR, SLA and height:diameter ratio, and increased RWR and R/S in both species, although Aleppo pine showed more pronounced changes. Unlike Aleppo pine, holm oak responded to increased nutrient availability by decreasing R/S and increasing LAR. From these results, no seed-seedling conflicts were found in either species, but a trade-off does seem to exist for holm oak between biomass allocation traits deployed in response to increased nutrient availability and radiation. Aleppo pine outperformed holm oak under most environmental conditions tested and showed a wider regeneration niche.

Mediterranean tree species Physical environment Regeneration niche Seed germination Seedling growth Seedling survival 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acherar, M., Lepart, J. & Debussche, M. 1984. La colonisation des friches par le pin d'Alep (Pinus halepensis) en Languedoc méditerranéen. Acta Oecol. Oecol. Plant 5: 179–189.Google Scholar
  2. Aschmann, H. 1984. A restrictive definition of Mediterranean climates. Bull. Soc. Bot. 131: 21–30.Google Scholar
  3. Augspurger, C. K. 1984. Light requirements of neotropical tree seedlings: a comparative study of growth and survival. J. Ecol. 72: 777–795.Google Scholar
  4. Bacilieri, R., Bouchet, M. A., Bran, D., Grandjanny, M., Maistre. M., Perret, P. & Romane, F. 1993. Germination and regeneration mechanisms in Mediterranean degenerate forests. J. Veg. Sci. 4: 241–246.Google Scholar
  5. Barbero, M., Loisel, R. & Quézel, P. 1992. Biogeography, ecology and history of Mediterranean Quercus ilexecosystems. Vegetatio 99/100: 19–34.Google Scholar
  6. Bazzaz, F. A. & Carlson, R.W. 1982. Photosynthetic acclimation to variability in the light environment of early and late succesional plants. Oecologia 54: 313–316.Google Scholar
  7. Bazzaz, F. A. & Miao, S. L. 1993. Successional status, seed size, and responses of tree seedlings to CO2, light, and nutrients. Ecology 74: 104–112.Google Scholar
  8. Bazzaz, F. A. & Wayne, P. M. 1994. Coping with environmental heterogeneity: the physiological ecology of tree seedling regeneration across the gap-understory continuum. Pp. 391–414. In: Caldwell, M. M. & Pearcy, R. W. (eds), Exploitation of environmental heterogeneity by plants, ecophysiological processes above and belowground. Academic Press, London.Google Scholar
  9. Borchert, M. I., Davis, F. W., Michaelsen, J. & Oyler, L. D. 1989. Interactions of factors affecting seedling recruitment of blue oak (Quercus douglasii) in California. Ecology 70: 389–404.Google Scholar
  10. Bran, D., Lobreaux, O., Maistre, M., Perret, P. & Romane, F. 1990. Germination of Quercus ilexand Q. pubescensin a Q. ilexcoppice. Long-term consequences. Vegetatio 87: 45–50.Google Scholar
  11. Callaway, R. M. 1992. Effect of shrubs on recruitment of Quercus douglasiiand Quercus lobatain California. Ecology 73: 2118–2128.Google Scholar
  12. Canham, C. D. 1989. Different responses to gaps among shadetolerant tree species. Ecology 70: 548–550.Google Scholar
  13. Chapin, F. S., Bloom, A. J., Field, C. B. & Waring, R. H. 1987. Plant responses to multiple environmental factors. BioScience 37: 49–57.Google Scholar
  14. Cowling, R. W. (ed) 1992. The Ecology of Fynbos: nutrients, fire and diversity. Oxford University Press, Cape Town.Google Scholar
  15. Davis, F. W. & Michaelsen, J. 1995. Sensitivity of fire regime in chaparral ecosystems to climate change. Pp. 435–456. In: Moreno, J. M. & Oechel, W. C. (eds), Global change in Mediterranean-type ecosystems. Springer-Verlag, Berlin.Google Scholar
  16. DeBano, L. F. & Conrad, C. E. 1978. The effects of fire on nutrients in a chaparral ecosystem. Ecology 59: 489–497.Google Scholar
  17. DeGange A. R., Fitzpatrick, J. W., Layne, J. N. & Woolfenden, G. E. 1989. Acorn harvesting by Florida scrub jays. Ecology 70: 348–356.Google Scholar
  18. Espelta, J. M., Retana, J., Gené, C. & Riba, M. 1994. Supervivencia de plántulas de pino carrasco (Pinus halepensis) y encina (Quercus ilex) en bosques mixtos de ambas especies. Ponencias y comunicaciones I Congreso Forestal Español, Lourizán (1993), Tomo II, pp. 393–398.Google Scholar
  19. Espelta, J. M., Riba, M. & Retana, J. 1995. Patterns of seedling recruitment in West Mediterranean coppiced holm-oak (Quercus ilexL.) forests influenced by canopy development. J. Veg. Sci. 6: 465–472.Google Scholar
  20. Gill, A. M., Groves, R. H. & Noble, I. R. 1981. Fire and the Australian biota. Australian Academy of Sciences, Canberra.Google Scholar
  21. Gleeson, S. K. & Tilman, D. 1994. Plant allocation, growth rate and successional status. Funct. Ecol. 8: 543–550.Google Scholar
  22. Grubb, P. J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52: 107–145.Google Scholar
  23. Hara, T., Kimura, M. & Kikuzawa, K. 1991. Growth patterns of tree height and stem diameter in populations of Abies veitchii, A. mariesiiand Betula ermanii. J. Ecol. 79: 1085–1098.Google Scholar
  24. Harper, J. L., Lovell, P. H. & Moore, K. G. 1970. The shapes and sizes of seeds. Ann. Rev. Ecol. Syst. 1: 327–356.Google Scholar
  25. Hilhorst, H.W.M. 1990. Dose response analysis of factors involved in germination and secondary dormancy of seeds of Sisymbrium officinale. II Nitrate. Plant Physiol. 94: 1096–1102.Google Scholar
  26. Karssen, M. & Hilhorst, H. W. M. 1992. Effect of chemical environment on seed germination. Pp. 327–347. In: Fenner, M. (ed.), Seeds. The ecology of regeneration in plant communities. CAB International, Wallingford.Google Scholar
  27. Kellman, M. & Kading, M. 1992. Facilitation of tree seedling establishment in a sand dune succession. J. Veg. Sci. 3: 679–688.Google Scholar
  28. Kitajima, K. 1994. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98: 485–492.Google Scholar
  29. Kolb, T. E., Steiner, K. C., McCormick, L. H. & Bowersox, T. W. 1990. Growth response of northern red-oak and yellow-poplar seedlings to light, soil moisture and nutrients in relation to ecological strategy. For. Ecol. Manag. 38: 65–78.Google Scholar
  30. Kutiel, P. & Shaviv, A. 1989. Effect of simulated forest fire on the availability of N and P in mediterranean soils. Plant Soil 120: 57–63.Google Scholar
  31. Lawton, R. O. 1990. Canopy gaps and light penetration into a windexposed tropical lower montane rain forest. Can. J. For. Res. 20: 659–667.Google Scholar
  32. Leishman, M. R. & Westoby, M. 1994. The role of large seed size in shaded conditions: experimental evidence. Funct. Ecol. 8: 205–214.Google Scholar
  33. Masalles, R. M. & Vigo, J. 1987. La successió a les terres mediterrànies: sèries de vegetació. Pp. 27–43. In: Terradas, J. (ed.), Ecosistemes terrestres. La resposta als incendis i a d'altres pertorbacions. Quaderns d'Ecologia Aplicada 10, Diputació de Barcelona, Barcelona.Google Scholar
  34. Matsuda, K., McBride, R. & Kimura, J. 1989. Seedling growth form of oaks. Ann. Bot. 64: 439–446.Google Scholar
  35. Naveh, Z. 1975. The evolutionary significance of fire in the Mediterranean region. Vegetatio 29: 199–208.Google Scholar
  36. Nyandiga, C. O. & McPherson, G. R. 1992. Germination of two warm-temperate oaks, Quercus emoryiand Quercus arizonica. Can. J. For. Res. 22: 1395–1401.Google Scholar
  37. Osunkjoya, O. O., Ash, J. E., Hopkins, M. S. & Graham, A.W. 1994. Influence of seed size and seedling ecological attributes on shade-tolerance of rain-forest tree species in northern Queensland. J. Ecol. 82: 149–163.Google Scholar
  38. Papió, C, 1994. Ecologia del foc i regeneració en garrigues i pinedes mediterrànies. Institut d'Estudis Catalans, Barcelona.Google Scholar
  39. Parrish, J. A. D. & Bazzaz, F. A. 1982. Responses of plants from three successional communities to a nutrient gradient. J. Ecol. 70: 233–248.Google Scholar
  40. Pigott, C. D. & Pigott, S. 1993. Water as a determinant of distribution of trees at the boundary of the Mediterranean zone. J. Ecol. 81: 557–566.Google Scholar
  41. Poorter, H. 1989. Interspecific variation in relative growth rate: on ecological causes and physiological consequences. Pp. 45–68. In: Lambers, H., Cambridge, M. L., Konings, H. & Pons, T. L. (eds), Causes and consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishing, The Hague.Google Scholar
  42. Poorter, H. & Remkes, C. 1990. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83: 553–559.Google Scholar
  43. Retana, J., Espelta, J. M. & Gracia, M. 1996. Caracterización de masas mixtas de pino carrasco y encina en el Montseny (nordeste de la Península Ibérica). Cuadernos de la SECF 3: 166–179.Google Scholar
  44. Rincón, E. & Huante, P. 1993. Growth responses of tropical deciduos tree seedlings to contrasting light conditions. Trees 7: 202–207.Google Scholar
  45. Rundel, P. W. 1983. Impact of fire on nutrient cycles in mediterranean-type ecosystems with reference to Chaparral. Pp. 192–207. In: Kruger, F. J., Mitchell, D. T. & Jarvis, J. U. M. (eds), Mediterranean-type ecosystems. The role of nutrients. Springer Verlag, Berlin.Google Scholar
  46. Schupp, E. W. 1995. Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. Am. J. Bot. 82: 399–409.Google Scholar
  47. Serrasolsas, I. 1994. Fertilitat dels sòls forestals afectats pel foc. Ph. D. Thesis, University of Barcelona, Barcelona.Google Scholar
  48. Sonesson, L. K. 1994. Growth and survival after cotyledon removal in Quercus roburseedlings, grown in different natural soil types. Oikos 69: 65–70.Google Scholar
  49. Specht, R. L., Moll, E. J., Pressinger, F. & Sommerville, J. 1983. Moisture regime and nutrient control of seasonal growth in Mediterranean ecosystems. Pp 120–132. In: Kruger, F. J., Mitchell, D. T. & Jarvis, J. U. M. (eds) Mediterranean-type ecosystems. The role of nutrients. Springer-Verlag, Berlin.Google Scholar
  50. St-Jacques, C, & Bellefleur, P. 1993. Light requeriments of some broadleaf tree seedlings in natural conditions. For. Ecol. Manag. 56: 329–341.Google Scholar
  51. Sultan, S. E. & Bazzaz, F. A. 1993. Phenotypic plasticity in Poligonum persicariaII. Norms of reaction to soil moisture and the maintenance of genetic diversity. Evolution 47: 1032–1049.Google Scholar
  52. Tanouchi, H. 1996. Survival and growth of two coexisting evergreen oak species after germination under different light conditions. Int. J. Plant. Sci. 154: 516–522.Google Scholar
  53. Terradas, J. 1991. Mediterranean woody plant growth-forms, biomass and production in the eastern part of the Iberian Peninsula. Oecol. Aquat. 10: 337–349.Google Scholar
  54. Thanos, C. A. & Rundel, P. W. 1995. Fire-followers in chaparral: nitrogenous compounds trigger seed germination. J. Ecol. 83: 207–216.Google Scholar
  55. van Wilgen, B. W., Richardson, D. M., Kruger, F. J. & van Hensbergen, H. J. (eds) 1992. Fire in South African Fynbos. Springer-Verlag, Berlin.Google Scholar
  56. Whitmore, T. C. 1989. Canopy gaps and the two major groups of forest trees. Ecology 70: 536–538.Google Scholar
  57. Young, J. L. & Aldag, R. W. 1982. Organic forms of nitrogen soils. Pp. 43–66. In: Stevenson, F. J. (ed.), Nitrogen in Agricultural Soils. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison.Google Scholar
  58. Zackrisson, O. & Nilsson, M. C. 1992. Allelopathic effects by Empetrum hermaphroditumon seed germination of two boreal tree species. Can. J. For. Res. 22: 1310–1319.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Maria José Broncano
  • Miquel Riba
  • Javier Retana

There are no affiliations available

Personalised recommendations