Advertisement

Plant Ecology

, Volume 130, Issue 1, pp 63–70 | Cite as

Growth and nitrogen accretion of dinitrogen-fixing Alnus glutinosa (L.) Gaertn. under elevated carbon dioxide

  • Christoph S. Vogel
  • Peter S. Curtis
  • Richard B. Thomas*
Article

Abstract

Short-term studies of tree growth at elevated CO2 suggest that forest productivity may increase as atmospheric CO2 concentrations rise, although low soil N availability may limit the magnitude of this response. There have been few studies of growth and N2 fixation by symbiotic N2-fixing woody species under elevated CO2 and the N inputs these plants could provide to forest ecosystems in the future. We investigated the effect of twice ambient CO2 on growth, tissue N accretion, and N2 fixation of nodulated Alnus glutinosa (L.) Gaertn. grown under low soil N conditions for 160 d. Root, nodule, stem, and leaf dry weight (DW) and N accretion increased significantly in response to elevated CO2. Whole-plant biomass and N accretion increased 54% and 40%, respectively. Delta-15N analysis of leaf tissue indicated that plants from both treatments derived similar proportions of their total N from symbiotic fixation suggesting that elevated CO2 grown plants fixed approximately 40% more N than did ambient CO2 grown plants. Leaves from both CO2 treatments showed similar relative declines in leaf N content prior to autumnal leaf abscission, but total N in leaf litter increased 24% in elevated compared to ambient CO2 grown plants. These results suggest that with rising atmospheric CO2 N2-fixing woody species will accumulate greater amounts of biomass N through N2 fixation and may enhance soil N levels by increased litter N inputs.

Black alder Carbon Dioxide Enrichment Delta 15N Analysis Nitrogen Fixation Root Nodules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnone, J. A. & Gordon, J. C. 1990. Effect of nodulation, nitrogen fixation and CO2 enrichment on the physiology, growth and dry mass allocation of seedlings of Alnus rubraBong. New Phytologist 116: 55-66.Google Scholar
  2. Bazzaz, F. A., Coleman, J. S. & Morse, S. R. 1990. Growth responses of seven major co-occurring tree species of the northeastern United States to elevated CO2. Can. J. Forest Res. 20: 1479- 1484.Google Scholar
  3. Ceulemans, R. & Mousseau, M. 1994. Effects of elevated atmospheric CO2 on woody plants. New Phytol. 127: 425-446.Google Scholar
  4. Chapin, F. S. & Kedrowski, R. A. 1983. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64: 376-391.Google Scholar
  5. Comins, H. N. 1994. Equilibrium analysis of integrated plant-soil models for prediction of the nutrient limited growth response to CO2 enrichment. J. Theor. Biol. 71: 369-385.Google Scholar
  6. Comins, H. N. & McMurtrie, R. E. 1993. Long-term response of nutrient-limited forests to CO2 enrichment; Equilibrium behavior of plant-soil models. Ecol. Appl. 3: 666-681.Google Scholar
  7. Cote, B. & Camire, C. 1984. Growth, nitrogen accumulation, and symbiotic dinitrogen fixation in pure and mixed plantings of hybrid poplar and black alder. Plant Soil 78: 209-220.Google Scholar
  8. Cote, B. Vogel, C. S. & Dawson, J. O. 1989. Autumnal changes in tissue nitrogen of autumn olive, black alder and eastern cottonwood. Plant Soil 118: 23-32.Google Scholar
  9. Cotrufo, M. F. & Ineson, P. 1996. Elevated CO2 reduces field decomposition rates of Betula pendula(Roth.) leaf litter. Oecologia 106: 525-530.Google Scholar
  10. Couteaux, M. M., Mousseau, M., Celerier, M. L. & Bottner, P. 1991. Increased atmospheric CO2 and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities. Oikos 61: 54-64Google Scholar
  11. Curtis, P. S. & Teeri, J. A. 1992. Seasonal responses of leaf gas exchange to elevated carbon dioxide in Populus grandidentata. Can. J. Forest Res. 22: 1320-1325.Google Scholar
  12. Curtis, P. S., Vogel, C. S., Pregitzer, K. S., Zak, D. R. & Teeri, J. A. 1995. Interacting effects of soil fertility and atmospheric CO2 on leaf area growth and carbon gain physiology in Populus x euramericana(Dode) Guinier. New Phytol. 129: 253-263.Google Scholar
  13. Dawson, J. O. 1983. Dinitrogen fixation in forest ecosystems. Can. J. Forest Res. 29: 979-992.Google Scholar
  14. Dawson, J. O. 1986. Actinorhizal plants: Their use in forestry and agriculture. Outlook Agric. 15: 202-208.Google Scholar
  15. Dawson, J. O. & Gordon, J. C. 1979. Nitrogen fixation in relation to photosynthesis in Alnus glutinosa. Bot. Gazette 140 (suppl): s70-s75.Google Scholar
  16. Diaz, S., Grime, J. P., Harris, J. & McPherson, E. 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364: 616-617.Google Scholar
  17. Focht, D. D. 1987. Measurement of biological nitrogen fixation by 15N techniques. pp. 257-288. In: Elkan, G. H. (ed), Symbiotic nitrogen fixation technology. Marcel Dekker, Inc., New York.Google Scholar
  18. Friedrich, J. M. & Dawson, J. O. 1984. Soil nitrogen concentration and Juglans nigragrowth in mixed plots with nitrogen-fixing Alnus, Elaeagnus, Lespedeza, and Robiniaspecies. Can. J. Forest Res. 14: 864-868.Google Scholar
  19. Gifford, R. M. 1992. Implications of the globally increasing atmospheric CO2 concentration and temperature for the Australian terrestrial carbon budget: integration using a simple model. Australian J. Bot. 40: 527-543.Google Scholar
  20. Gordon, J. C. & Wheeler, C. T. 1978. Whole-plant studies on photosynthesis and acetylene reduction in Alnus glutinosa. New Phytol. 80: 179-186.Google Scholar
  21. Gunderson, C. A. & Wullschleger, S. D. 1994. Photosynthetic acclimation in trees to rising atmospheric CO2: A broader perspective. Photosynthesis Res. 39: 369-388.Google Scholar
  22. Kirschbaum, M. U. F., King, D. A., Comins, H. N., McMurtrie, R. E., Medlyn, B. E., Pongracic, S., Murty, D., Keith, H., Raison, R. J., Khanna, P. K. & Sheriff, D. W. 1994. Modelling forest response to increasing CO2 concentration under nutrient-limited conditions. Plant Cell Environ. 17: 1081-1099.Google Scholar
  23. Norby, R. J. 1987. Nodulation and nitrogenase activity in nitrogen-fixing woody plants stimulated by CO2 enrichment of the atmosphere. Physiol. Plantarum 71: 77-82.Google Scholar
  24. Norby, R. J., O'Neill, E. G. & Luxmoore, R. J. 1986a. Effects of atmospheric CO2 enrichment on the growth and mineral nutrition of Quercus albaseedlings in nutrient-poor soil. Plant Physiol. 82: 83-89.Google Scholar
  25. Norby, R. J., Pastor, J. & Melillo, J. M. 1986b. Carbon-nitrogen interactions in CO2-enriched white oak: physiological and longterm perspectives. Tree Physiol. 2: 233-241.Google Scholar
  26. Paschke, M. W., Dawson, J. O. & David, M. B. 1989. Soil nitrogen mineralization in plantations of Juglans nigrainterplanted with actinorhizal Elaeagnus umbellataor Alnus glutinosa. Plant Soil 118: 33-42.Google Scholar
  27. Pastor, J & Post, W. M. 1988. Response of northern forests to CO2-induced climate change. Nature 334: 55-58.Google Scholar
  28. Phillips, D. A., Newell, K. D., Hassell, S. A. & Felling, C. E. 1976. The effect of CO2 enrichment on root nodule development and symbiotic N2 reduction in Pisum sativumL. Amer. J. Bot. 63: 356-362.Google Scholar
  29. Pregitzer, K. S., Zak, D. R., Curtis, P. S., Kubiske, M. E., Teeri, J. A. & Vogel, C. S. 1995. Atmospheric CO2, soil nitrogen, and fine root turnover. New Phytol. 129: 579-585.Google Scholar
  30. Ryle, G. J. A., Powell, C. E. & Davidson, I. A. 1992. Growth of white clover, dependent on N2 fixation, in elevated CO2 and temperature. Ann. Bot. 70: 213-220.Google Scholar
  31. Sellstedt, A., Huss-Danell, K. & Ahlqvist A. 1986. Nitrogen fixation and biomass production in symbiosis between Alnus incanaand Frankiastrains with different hydrogen metabolism. Physiol. Plantarum 66: 99-107.Google Scholar
  32. Shearer, G., Kohl, D. H., Virginia, R. A., Bryan, B. A., Skeeters, J. L., Nilsen, E. T., Sharifi, M. R. & Rundel P. W. 1983. Estimates of N2-fixation from variation in the natural abundance of 15N in Sonoran Desert ecosystems. Oecologia 56: 365-373.Google Scholar
  33. Sinclair, T. R. 1992. Mineral nutrition and plant growth response to climate change. J. Exper. Bot. 43: 1141-1146.Google Scholar
  34. Stulen, I. & den Hertog, J. 1993. Root growth and functioning under atmospheric CO2 enrichment. Vegetatio 104/105: 99-115.Google Scholar
  35. Thomas, R. B., Richter, D. D., Ye, H., Heine, P. R. & Strain, B. R. 1991. Nitrogen dynamics and growth of seedlings of an N-fixing tree (Gliricidia sepium(Jacq) Walp.) exposed to elevated atmospheric carbon dioxide. Oecologia 88: 415-421.Google Scholar
  36. Tissue, D. T., Thomas, R. B. & Strain, B. R. 1993. Long-term effects of elevated CO2 and nutrients on photosynthesis and rubisco in loblolly pine seedlings. Plant, Cell Environ. 16: 859-865.Google Scholar
  37. Tjepkema, J. D. 1985. Utilization of photosynthate for nitrogen fixation in seedlings of Myrica galeand Alnus rubra. Pp. 183- 192. In: Ludden, P. W. & Burris, J. E. (eds), Nitrogen Fixation and CO2 metabolism. Elsevier, New York.Google Scholar
  38. Vogel, C. S. & Curtis, P. S. 1995. Leaf gas exchange and nitrogen dynamics of N2-fixing, field grown Alnus glutinosaunder elevated atmospheric CO2. Global Change Biol. 1: 55-56.Google Scholar
  39. Vogel, C. S. & Dawson, J. O. 1993. Changes in tissue nitrogen and phosphorus and foliar free amino acids in autumn olive, black locust, American sycamore, and honey locust during autumn. Can. J. Forest Res. 23: 665-672.Google Scholar
  40. Wong, S. C., Kriedemann, P. E. & Farquhar, G. D. 1992. CO2 × nitrogen interaction on seedling growth of four species of Eucalypt. Austr. J. Bot. 40: 457-472.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Christoph S. Vogel
    • 1
    • 2
  • Peter S. Curtis
    • 1
    • 2
  • Richard B. Thomas*
    • 3
  1. 1.Department of Plant BiologyThe Ohio State UniversityColumbusUSA
  2. 2.Biological StationThe University of MichiganPellstonUSA
  3. 3.Department of BotanyDuke UniversityDurhamUSA

Personalised recommendations