The Ramanujan Journal

, Volume 1, Issue 2, pp 119–153 | Cite as

Highly Composite Numbers by Srinivasa Ramanujan

  • Jean-Louis Nicolas
  • Guy Robin


In 1915, the London Mathematical Society published in its Proceedings a paper of Ramanujan entitled “Highly Composite Numbers”. But it was not the whole work on the subject, and in “The lost notebook and other unpublished papers”, one can find a manuscript, handwritten by Ramanujan, which is the continuation of the paper published by the London Mathematical Society.

This paper is the typed version of the above mentioned manuscript with some notes, mainly explaining the link between the work of Ramanujan and works published after 1915 on the subject.

A number N is said highly composite if M < N implies d(M) < d(N), where d(N) is the number of divisors of N. In this paper, Ramanujan extends the notion of highly composite number to other arithmetic functions, mainly to Q2k(N) for 1 ≤ k ≤ 4 where Q2k(N) is the number of representations of N as a sum of 2k squares and σ-s(N) where σ-s(N) is the sum of the (-s)th powers of the divisors of N. Moreover, the maximal orders of these functions are given.

highly composite number arithmetical function maximal order divisors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Alaoglu and P. Erdös, “On highly composite and similar numbers,” Trans. Amer. Math. Soc. 56(1944), 448-469.Google Scholar
  2. 2.
    B.J. Birch, “A look back at Ramanujan's notebook,” Math. Proc. Camb. Phil. Soc. 78(1975), 73-79.Google Scholar
  3. 3.
    J.L. Duras, J.L. Nicolas, and G. Robin, “Majoration des fonctions d k(n),” (to appear).Google Scholar
  4. 4.
    P. Erdös and J.L._ Nicolas, “Répartition des nombres superabondants,” Bull. Soc. Math. France 103(1975), 113-122.Google Scholar
  5. 5.
    G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford, 1971.Google Scholar
  6. 6.
    G.H. Hardy, Ramanujan, Cambridge Univ. Press, 1940 and Chelsea, 1978.Google Scholar
  7. 7.
    J.L. Nicolas, “Répartition des nombres hautement composés de Ramanujan,” Canadian J. Math. 23(1971), 115-130.Google Scholar
  8. 8.
    J.L. Nicolas, “Grandes Valeurs Des Fonctions Arithmétiques,” Séminaire D.P.P. Paris, (16e année, 1974/75), n o. G20, p. 5.Google Scholar
  9. 9.
    J.L. Nicolas, “Répartition des nombres largement composés,” Acta Arithmetica 34(1980), 379-390.Google Scholar
  10. 10.
    J.L. Nicolas and G. Robin, “Majorations explicites pour le nombre de diviseurs de N,” Canad. Math. Bull. 26(1983), 485-492.Google Scholar
  11. 11.
    J.L. Nicolas, “Petites valeurs de la fonction d'Euler,” Journal of Number Theory 17(1983), 375-388.Google Scholar
  12. 12.
    J.L. Nicolas, “On Highly Composite Numbers,” Ramanujan revisited, Academic Press, 1988, pp. 216-244.Google Scholar
  13. 13.
    J.L. Nicolas, “On Composite Numbers,” Number Theory, Madras 1987, Lecture Notes in Maths. 1395, edited by K. Alladi, Springer Verlag, 1989, pp. 18-20.Google Scholar
  14. 14.
    K.K. Norton, “Upper bounds for sums of powers of divisor functions,” J. Number Theory 40(1992), 60-85.Google Scholar
  15. 15.
    H. Rademacher, Topics in Analytic Number Theory, Springer Verlag, 1973.Google Scholar
  16. 16.
    S. Ramanujan, “Highly Composite Numbers,” Proc. London Math. Soc. Serie 2 14(1915), 347-400.Google Scholar
  17. 17.
    S. Ramanujan, Collected Papers, Cambridge University Press, 1927, and Chelsea 1962.Google Scholar
  18. 18.
    S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House and Springer Verlag, New Delhi, 1988.Google Scholar
  19. 19.
    R.A. Rankin, “Ramanujan's manuscripts and notebooks II,” Bull. London Math. Soc. 21(1989), 351-365.Google Scholar
  20. 20.
    G. Robin, Sur l'ordre maximum de la fonction somme des diviseurs, Séminaire Delange-Pisot-Poitou. Paris, 1981-1982; Progress in MathematicsBirkhäuser, 38(1983), 223-244.Google Scholar
  21. 21.
    G. Robin, Grandes valeurs de fonctions arithmétiques et problèmes d'optimisation en nombres entiers, Thèse d'Etat, Université de Limoges, France, 1983.Google Scholar
  22. 22.
    G. Robin, “Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann,” J. Math. Pures et Appl. 63(1984), 187-213.Google Scholar
  23. 23.
    G. Robin, “Sur la différence Li(?(x)) -??x?,” Ann. Fac. Sc. Toulouse 6(1984), 257-268.Google Scholar
  24. 24.
    G. Robin, “Grandes valeurs de la fonction somme des diviseurs dans les progressions arithmétiques,” J. Math. Pures et Appl. 66(1987), 337-349.Google Scholar
  25. 25.
    G. Robin, Sur des Travaux non publiés de S. Ramanujan sur les Nombres Hautement Composés, Publications du département de Mathématiques de l'Université de Limoges, France, 1991, pp. 1-60.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Jean-Louis Nicolas
    • 1
  • Guy Robin
    • 2
  1. 1.Institut Girard Desargues, UPRES-A-5028, MathématiquesUniversité Claude Bernard (LYON1)Villeurbanne cédexFrance
  2. 2.UPRES-A-6090, Théorie des nombres, calcul formel et optimisationUniversité de LimogesLimoges cédexFrance

Personalised recommendations