Plant Ecology

, Volume 135, Issue 1, pp 79–93 | Cite as

Pine invasions in the southern hemisphere: modelling interactions between organism, environment and disturbance

  • Steven I. Higgins
  • David M. Richardson


Current theories of plant invasion have been criticized for their limited heuristic and predictive value. We explore the heuristic and predictive potential of a model which explicitly simulates the mechanisms of plant invasion. The model, a spatially-explicit individual-based simulation, is applied to the invasion of pine trees (Pinus spp.; Pinaceae) in three vegetation types in the southern hemisphere. The model simulates factors which have been invoked as major determinants of invasive success: plant traits, environmental features and disturbance level. Results show that interactions between these determinants of invasive success are at least as important as the main effects. The complexity of invasions has promoted the belief that many factors must be invoked to explain invasions. This study shows that by incorporating interactions and mechanisms into our models we can potentially reduce the number of factors needed to predict plant invasions. The importance of interactions, however, means that predictions about invasions must be context-specific. The search for all-encompassing rules for invasions is therefore futile. The model presented here is of heuristic value since it improves our understanding of invasions, and of management value since it defines the data and models needed for predicting invasions.

Biological invasions Disturbance Environment-type Interactions Invasion theory Life-history attributes Pinus Spatially-explicit individual-based model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, L. J. S., Allen, E. J., Kunst, C. R. G. & Sosebee, R. E. 1991. A diffusion model for dispersal of Opuntia imbricata (Cholla) on rangeland. J. Ecol. 79: 1123–1135.Google Scholar
  2. Bond, W. J. & Richardson, D. M. 1990. What can we learn from extinctions and invasions about the effects of climate change? S. Afr. J. Sci. 86: 429–433.Google Scholar
  3. Bond, W. J. & van Wilgen, B. W. 1996. Fire and plants. Chapman and Hall, London.Google Scholar
  4. Burke, M. J.W. & Grime, J. P. 1996. An experimental study of plant community invasibility. Ecology 77: 776–790.Google Scholar
  5. Case, T. J. 1991. Invasion resistance, species build-up and community collapse in metapopulation models with interspecies competition. Biol. J. Linn. Soc. 42: 239–266.Google Scholar
  6. Cowling, R. M., Richardson, D. M. & Mustart, P. J. 1997. Fynbos. Pp. 99–130. In: Cowling, R. M., Richardson, D. M. & Pierce, S. M. (eds) Vegetation of southern Africa, Cambridge University Press, Cambridge.Google Scholar
  7. Crawley, M. J. 1986. The population biology of invaders. Phil. Trans. Roy. Soc. London 314B: 711–731.Google Scholar
  8. Crawley, M. J. 1987. What makes a community invasible? Pp. 429–453. In: Gray, A. J., Crawley, M. J. & Edwards, P. J. (eds) Colonization, succession and stability, Blackwell, Oxford.Google Scholar
  9. Crawley, M. J., Harvey, P. H. & Purvis, A. 1996. Comparitive ecology of the native and alien floras of the British Isles. Phil. Trans. Roy. Soc. London B351: 1251–1259.Google Scholar
  10. Cross, J. R. 1981. The establishment of Rhododendron ponticum in the Killarney oakwoods, S. W. Ireland. J. Ecol. 69: 807–824.Google Scholar
  11. D'Antonio, C. M. and Vitousek, P. M. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Ann. Rev. Ecol. Syst. 23: 63–87.Google Scholar
  12. DeFarrari, C. M. & Naiman, R. J. 1994. A multi-scale assessment of the occurrence of exotic plants on the Olympic Peninsula, Washington. J. Veg. Sci. 5: 247–258.Google Scholar
  13. Diamond, J. & Case, T. J. 1986. Overview: introductions, extinctions, exterminations and invasions. Pp. 66–79. In: Diamond, J. & Case, T. J. (eds) Community Ecology, Harper and Row, New York.Google Scholar
  14. Drake, J. A., Mooney, H. A., Di Castri, F., Groves, R. H., Kruger, F. J., Rejmánek, M. & Williamson, M. 1989. Biological invasions: A global perspective. John Wiley and Sons, Chichester.Google Scholar
  15. Elton, C. S. 1958. The ecology of biological invasions by animals and plants. Meuthuen, London.Google Scholar
  16. Enright, N. J., Lamont, B. B. & Marsula, R. 1996. Canopy seed bank dynamics and optimum fire regime for the highly serotinous shrub, Banksia hookeriana. J. Ecol. 84: 9–17.Google Scholar
  17. Fox, M. D. & Fox, B. D. 1986. The susceptibility of natural communities to invasion. Pp. 97–105. In: Groves, R. H. & Burdon, J. J. (eds). Ecology of biological invasions: An Australian perspective, Australian Academy of Science, Canberra.Google Scholar
  18. Gilpin, M. 1990. Ecological prediction. Science 248: 88–89.Google Scholar
  19. Greene, D. F. & Johnson, E. A. 1995. Long distance wind dispersal of tree seeds. Can. J. Bot. 73: 1036–1045.Google Scholar
  20. Harper, J. L. 1977. Population biology of plants. Academic Press, London.Google Scholar
  21. Higgins, S. I. & Richardson, D. M. 1996. A review of models of alien plant spread. Ecol. Model. 87: 249–265.Google Scholar
  22. Higgins, S. I., Richardson, D. M. & Cowling, R. M. 1996. Modeling invasive plant spread: The role of plant-environment interactions and model structure. Ecology 77: 2043–2054.Google Scholar
  23. Higgins, S. I., Turpie, J. K., Costanza, R., Cowling, R. M., Le Maitre, D. C., Marais, C. & Midgley, G. F. 1997. An ecological economic simulation model of mountain fynbos ecosystems: Dynamics, valuation and management. Ecol. Econ. 22: 155–169.Google Scholar
  24. Hobbs, R. J. & Atkins, L. 1988. Effect of disturbance and nutrient addition on native and introduced annuals in plant communities in the Western Australian wheatbelt. Austr. J. Ecol. 13: 171–179.Google Scholar
  25. Hobbs, R. J. & Huenneke, L. F. 1992. Disturbance, diversity, and invasion: Implications for conservation. Cons. Biol. 6: 324–337.Google Scholar
  26. Hobbs, R. J. & Humphries, S. E. 1995. An integrated approach to the ecology and management of plant invasions. Cons. Biol. 9: 761–770.Google Scholar
  27. Hobbs, R. J. & Mooney, H. A. 1991. Effects of rainfall variability on gopher disturbance on serpentine annual grassland dynamics in N. California. Ecology 72: 59–68.Google Scholar
  28. Honig, M. A., Cowling, R. M. & Richardson, D. M. 1992. The invasion potential of Australian Banksias in South African fynbos: A comparison of the reproductive potential of Banksia ericifolia and Leucodendron laureolum. Aust. J. Ecol. 17: 305–314.Google Scholar
  29. Huenneke, L. F., Hamburg, S. P., Koide, R., Mooney, H. A. & Vitousek, P.M. 1990. Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology 71: 478–471.Google Scholar
  30. Huston, M. & Smith, T. 1987. Plant succession: life history and competition. Amer. Nat. 130: 168–198.Google Scholar
  31. Keeley, J. E. & Zedler, P.H. 1998. Evolution of life histories in Pinus. Pp. 219–251. In: Richardson (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge.Google Scholar
  32. Kelly, D. 1994. The evolutionary ecology of mast seedling. Trends Ecol. Evol. 9: 465–470.Google Scholar
  33. Kenkel, N. C. 1988. Pattern of self-thinning in jack pine: testing the random mortality hypothesis. Ecology 69: 1017–1024.Google Scholar
  34. Knops, J. M. H., Griffin, J. R & Royalty A. C. 1995. Introduced and native plants of the Hastings reservation, central coastal California: A comparison. Biol. Cons. 71: 115–123.Google Scholar
  35. Lanner, R. M. 1998. Seed dispersal in Pinus. Pp. 281–295. In: Richardson, D. M. (ed). Ecology and biogeography of Pinus. Cambridge University Press, Cambridge.Google Scholar
  36. Le Maitre, D. C. 1998. Pines in cultivation: a global view. Pp. 407–431. In: Richardson, D. M. (ed). Ecology and biogeography of Pinus. Cambridge University Press, Cambridge.Google Scholar
  37. Levins, R. 1966. The strategy of model building in population biology. Amer. Sci. 54: 421–431.Google Scholar
  38. Lodge, D. M. 1993a. Biological invasions: Lessons for ecology. Trends Ecol. Evol. 8: 133–137.Google Scholar
  39. Lodge, D. M. 1993b. Species invasions and deletions: Community effects and responses to climate change and habitat change. Pp. 367–387. In: Kareiva, P. M., Kingsolver, J. G. and Huey, R. B. (eds) Biotic interactions and global climate change, Sinauer, Sunderland.Google Scholar
  40. Mack, R. N. 1985. Invading plants: Their potential contribution to population biology. Pp. 127–142. In: White, J. (ed.), Studies in plant demography. A festschrift for John L. Harper, Academic Press, London.Google Scholar
  41. Mack, R. N. 1995. Understanding the processes of weed invasions: the influence of environmental stochasticity. BCPC Symposium Proceedings: Weeds Changing World 64: 65–74.Google Scholar
  42. Mack, R. N. 1996. Biotic barriers to plant naturalization. Pp. 39–46. In: Moran, V. C. & Hoffmann, J. H. (eds) Proceedings of the IX international symposium on biological control of weeds, University of Cape Town, Cape Town.Google Scholar
  43. Maurer, B. A. 1994. Geographical population analysis: Tools for the analysis of biodiversity. Blackwell Scientific Publications, London.Google Scholar
  44. Midgley, J. J., Cameron, M. C. & Bond, W. J. 1995. Gap characteristics and replacement patterns in the Knysna forest, South Africa. J. Veg. Sci. 6: 29–36.Google Scholar
  45. Midgley, J. J., Cowling, R. M., Seydack, A. H. W. & van Wyk, G. F. 1997. Forests. Pp. 278–299. In: Cowling, R. M., Richardson, D. M. & Pierce, S. M. (eds) Vegetation of Southern Africa, Cambridge University Press, Cambridge.Google Scholar
  46. Mooney, H. A., Hamburg, S. P. & Drake, J. A. 1986. The invasions of plants and animals into California. Pp. 250–272. In: Mooney, H. A. & Drake, J. A. (eds). Ecology of biological invasions of North America and Hawaii, Springer-Verlag, New York.Google Scholar
  47. Noble, I. R. & Slatyer, R. O. 1980. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43: 5–21.Google Scholar
  48. O'Connor, T. G. & Bredenkamp, G. J. 1997. Grassland. Pp. 215–257. In: Cowling, R. M., Richardson, D. M. & Pierce, S. M. (eds). Vegetation of southern Africa, Cambridge University Press, Cambridge.Google Scholar
  49. Okubo, A. & Levin, S. A. 1989. A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology 70: 329–339.Google Scholar
  50. Pacala, S. W. and Silander, J. A. 1985. Neighbourhood models of plant population dynamics. I. Single species models of annuals. Am. Nat. 125: 385–411.Google Scholar
  51. Peart, D. R. 1989. Species interactions in a successional grassland. II. Colonization of vegetated sites. J. Ecol. 77: 752–766.Google Scholar
  52. Pimm, S. L. 1984. The complexity and stability of ecosystems. Nature 307: 321–326.Google Scholar
  53. Planty-Tabacchi, A. M., Tabacchi, E., Naiman, R. J., Defarrari, C. & Decamps, H. 1996. Invasibility of species-rich communities in riparian zones. Cons. Biol. 10: 598–607.Google Scholar
  54. Portnoy, S. & Willson, M. F. 1993. Seed dispersal curves: behaviour of the tail of the distribution. Evol. Ecol. 7: 25–44.Google Scholar
  55. Pysek, P. & Pysek, A. 1995. Invasion by Heracleummantegazzianum in different habitats in the Czech Republic. J. Veg. Sci. 6: 711–718.Google Scholar
  56. Rejmánek, M. 1996a. A theory of seed plant invasiveness: the first sketch. Biol. Cons. 78, 171–181.Google Scholar
  57. Rejmánek, M. 1996b. Species richness and resistance to invasions. Pp. 153–172. In: Orians, G. H., Dirzo, R. & Cushman, J. H. (eds). Diversity and processes in tropical forest ecosystems, Springer-Verlag, Berlin.Google Scholar
  58. Rejmánek, M. & Richardson, D. M. 1996. What attributes make some plants more invasive? Ecology 77: 1655–1661.Google Scholar
  59. Richardson, D. M. 1988. Age structure and regeneration after fire in a self-sown Pinus halepensis forest on the Cape Peninsula, South Africa. S. Afr. J. Bot. 54: 140–144.Google Scholar
  60. Richardson, D. M. & Bond, W. J. 1991. Determinants of plant distribution: Evidence from pine invasions. Am. Nat. 137: 639–668.Google Scholar
  61. Richardson, D. M. & Cowling, R. M. 1994. The ecology of invasive pines (Pinus spp.) in the Jonkershoek valley, Stellenbosch, South Africa. Bontebok 9: 1–10.Google Scholar
  62. Richardson, D. M. & Higgins, S. I. 1998. Pines as invaders in the southern hemisphere. Pp. 450–473. In: Richardson, D. M. (ed) Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge (in press).Google Scholar
  63. Richardson, D. M., Cowling, R. M. & Le Maitre, D. C. 1990. Assessing the risk of success in Pinus and Banksia in South African mountain fynbos. J. Veg. Sci. 1: 629–642.Google Scholar
  64. Richardson, D. M., Williams, P. A. & Hobbs, R. J. 1994. Pine invasions in the southern hemisphere: determinants of spread and invadability. J. Biogeog. 21: 511–527.Google Scholar
  65. Robinson, G. R., Quinn, J. F. & Stanton, M. L. 1995. Invasibility of experimental habitat islands in a California winter annual grassland. Ecology 76: 786–794.Google Scholar
  66. Roy, J. 1990. In search of the characteristics of plant invaders. Pp. 335–352. In: di Castri, F., Hansen, A. J. & Debussche, M. (eds). Biological invasions in Europe and the Mediterranean basin, Kluwer Academic Publishers, Dordrecht.Google Scholar
  67. Runkle, J. R. 1985. Disturbance regimes in temperate forests. Pp. 17–33. In: Pickett, S. T. A. & White, P. S. (eds) The ecology of natural disturbance and patch dynamics, Academic Press, Orlando.Google Scholar
  68. Strang, R. M. 1974. Some man-made changes in successional trends on the Rhodesian Highveld. J. Appl. Ecol. 11: 249–263.Google Scholar
  69. Teague, W. R. & Smit, G. N. 1992. Relationships between woody and herbaceous components and the effects of bushclearing in Southern African savannas. J. Grassl. Soc. S. Afr. 9: 60–71.Google Scholar
  70. Thompson, K. 1994. Predicting the fate of temperate species in response to human disturbance and global change. Pp. 61–76. In: Boyle, T. J. B. & Boyle, C. E. B. (eds) Biodiversity, temperate ecosystems, and global change, Springer-Verlag, Berlin.Google Scholar
  71. Thompson, K., Hodgson, J. G. & Rich, T. C. G. 1995. Native and alien invasive plants: more of the same? Ecography 18: 390–402.Google Scholar
  72. Tilman, D. 1997. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78: 81–92.Google Scholar
  73. Turner, M. G. & Romme, W. H. 1994. Landscape dynamics in crown fire ecosystems. Landscape Ecol. 9: 59–77.Google Scholar
  74. van Wilgen, B. W., Everson, C. S. & Trollope, W. S. W. 1990. Fire management in Southern Africa: Some examples of current objectives, practices, and problems. Pp. 179–215. In: Goldammer, J. G. (ed). Fire in the tropical biota, Springer-Verlag, Berlin.Google Scholar
  75. vanWilgen, B.W. & Siegfried, W. R. 1986. Seed dispersal properties of three pine species as a determinant of invasive potential. S. Afr. J. Bot. 52: 546–548.Google Scholar
  76. Vermeij, G. J. 1996. An agenda for invasion biology. Biol. Cons. 78: 3–9.Google Scholar
  77. Whisenant, S. G. 1990. Changing fire frequencies on Idaho's Snake River plains: Ecological and management implications. Pp. 4–10. In: McArthur, E. D., Romney, E. M., Smith, S. D. & Tueller, P. T. (eds) Proceedings-symposium on cheatgrass invasion, shrub die-off, and other aspects of shrub biology and management, Intermountain Research Station, Forest Service, U.S. Dept. Agriculture, Ogden.Google Scholar
  78. Williamson, M. 1996. Biological invasions. Chapman and Hall. London.Google Scholar
  79. Willson, M. F. 1993. Dispersal mode, seed shadows, and colonization patterns. Vegetatio 107/108: 261–280.Google Scholar
  80. Zedler, P. H., Gautier, C. R. & McMaster, G. S. 1983. Vegetation change in response to extreme events: the effect of a short interval between fires in california chaparral and coastal scrub. Ecology 64: 809–818.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Steven I. Higgins
    • 1
  • David M. Richardson
    • 1
  1. 1.Institute for Plant Conservation, Department of BotanyUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations