Journal of Seismology

, Volume 1, Issue 3, pp 237–251 | Cite as

2d and 3D elastic wave propagation by a pseudo-spectral domain decomposition method

  • E. Faccioli
  • F. Maggio
  • R. Paolucci
  • A. Quarteroni
Article

Abstract

A new numerical method is presented for propagating elastic waves in heterogeneous earth media, based on spectral approximations of the wavefield combined with domain decomposition techniques. The flexibility of finite element techniques in dealing with irregular geologic structures is preserved, together with the high accuracy of spectral methods. High computational efficiency can be achieved especially in 3D calculations, where the commonly used finite-difference approaches are limited both in the frequency range and in handling strongly irregular geometries. The treatment of the seismic source, introduced via a moment tensor distribution, is thoroughly discussed together with the aspects associated with its numerical implementation. The numerical results of the present method are successfully compared with analytical and numerical solutions, both in 2D and 3D.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M. and Stegun, I. A. (eds), 1966, Handbook of Mathematical Functions, Dover, New York.Google Scholar
  2. Aki K. and Richards, P., 1980, Quantitative Seismology. Theory and Methods, Freeman, San Francisco.Google Scholar
  3. Bernardi, C. and Maday, Y., 1992, Approximations Spectrales de Problèmes aux Limites Elliptiques, SpringerVerlag, Paris.Google Scholar
  4. Boyd, J. P., 1989, Chebyshev and Fourier Spectral Methods, SpringerVerlag, Berlin.Google Scholar
  5. Canuto, C., Hussaini, M., Quarteroni, A. and Zang, T., 1988, Spectral Methods in Fluid Dynamics, SpringerVerlag, New York.Google Scholar
  6. Clayton, R. and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations, B.S.S.A. 67, 1529–1540.Google Scholar
  7. Davis, P. and Rabinowitz, P., 1984, Methods of Numerical Integration, 2nd edn., Academic Press, Orlando.Google Scholar
  8. Faccioli, E., Maggio, F., Quarteroni, A. and Tagliani, A., 1996, Spectraldomain decomposition methods for the solution of acoustic and elastic wave equations, Geophysics 61, 1160-1174.Google Scholar
  9. Frankel, A. and Vidale, J., 1992, A three-dimensional simulation of seismic waves in the Santa Clara Valley, California, from a Loma Prieta aftershock, B.S.S.A. 82, 2045–2074.Google Scholar
  10. Frankel, A., 1993, Three-dimensional simulations of ground motions in the San Bernardino Valley, California, for hypothetical earthquakes on the San Andreas fault, B.S.S.A. 83, 1020–1041.Google Scholar
  11. Garvin, W., 1956, Exact transient solution of the buried line source problem, Proc. Royal Soc. London, Series A 234, 528–541.Google Scholar
  12. Graff, K. F., 1975, Wave Motion in Elastic Solids, Oxford University Press, London.Google Scholar
  13. Graves, R., 1996, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, B.S.S.A. 86, 1091–1106.Google Scholar
  14. Kosloff, D., Reshef, M. and Loewenthal, D., 1984, Elastic wave calculations by the Fourier method. B.S.S.A. 74, 875–891.Google Scholar
  15. Kosloff, R. and Kosloff, D., 1986, Absorbing boundaries for wave propagation problems, J. Comp. Phys. 63, 363–376.Google Scholar
  16. Lahaye, D., Maggio, F. and Quarteroni, A., 1997, Hybrid spectral element finite element methods for wave propagation problems. To appear in East–West J. Num. Math..Google Scholar
  17. Madariaga, R., 1983, Earthquake source theory: a review. In: Proc. Int. School of Physics “E. Fermi”, Course 85, Varenna, Italy, 1–44, North-Holland, Amsterdam.Google Scholar
  18. Maggio, F. and Quarteroni, A., 1994, Acoustic wave simulation by spectral methods. East–West J. Num. Math. 2, 129–150.Google Scholar
  19. Olsen, K., Pechmann, J. and Schuster, G., 1995a, Simulation of 3D elastic wave propagation in the Salt Lake Basin, B.S.S.A. 85, 1688–1710.Google Scholar
  20. Olsen, K., Archuleta, R. and Matarese, J., 1995b, Three-dimensional simulation of a magnitude 7.75 earthquake on the San Andreas fault, Science 270, 1628–1632.Google Scholar
  21. Olsen, K., Pechmann, J. and Schuster, G., 1996, An analysis of simulated and observed blast records in the Salt Lake basin, B.S.S.A. 86, 1061–1076.Google Scholar
  22. Rodríguez-Zúñiga, J. L., Sánchez-Sesma, F. J. and Pérez-Rocha, L. E., 1995, Seismic response of shallow alluvial valleys: the use of simplified models, B.S.S.A. 85, 890–899.Google Scholar
  23. Sánchez-Sesma, F. J. and Campillo, M., 1991, Diffraction of P, SV, and Rayleigh waves by topographic features: a boundary integral formulation, B.S.S.A. 81, 2234–2253.Google Scholar
  24. Sánchez-Sesma, F. J. and Luzon, F., 1995, Seismic response of three-dimensional alluvial valleys for incident P, S, and Rayleigh waves, B.S.S.A. 85, 269–284.Google Scholar
  25. Sánchez-Sesma, F. J., 1996, Written personal communication.Google Scholar
  26. Stacey, R., 1988, Improved transparent boundary formulations for the elastic-wave equation, B.S.S.A. 78, 2089–2097.Google Scholar
  27. Zienkiewicz, O. C. and Taylor, R. L., 1989, The Finite Element Method, Vol. 1, McGraw-Hill, London.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • E. Faccioli
    • 1
  • F. Maggio
    • 2
  • R. Paolucci
    • 1
  • A. Quarteroni
    • 2
    • 3
  1. 1.Department of Structural EngineeringPolitecnicoMilanoItaly
  2. 2.Centro di RicercaSviluppo e Studi Superiori in Sardegna (CRS4)CagliariItaly
  3. 3.Department of MathematicsPolitecnicoMilanoItaly

Personalised recommendations