The Ramanujan Journal

, Volume 2, Issue 1–2, pp 7–20 | Cite as

Euler's Function in Residue Classes

  • Thomas Dence
  • Carl Pomerance
Article

Abstract

We discuss the distribution of integers n with ϕ(n) in a particular residue class, showing that if a residue class contains a multiple of 4, then it must contain infinitely many numbers ϕ(n). We get asymptotic formulae for the distribution of ϕ(n) in the various residue classes modulo 12.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Davenport, Multiplicative Number Theory, 2nd edition, Springer-Verlag, New York, 1980.Google Scholar
  2. 2.
    H. Delange, “Sur les fonctions multiplicatives à valeurs entiers,” C. R. Acad. Sci. Paris, Série A 283 (1976), 1065–1067.Google Scholar
  3. 3.
    J.B. Dence and T. Dence, “A surprise regarding the equation ø(x) = 2(6n + 1),” The College Math. J. 26 (1995), 297–301.Google Scholar
  4. 4.
    G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th edition, Oxford University Press, p. 351, 1979.Google Scholar
  5. 5.
    E. Landau, Handbuch der Lehre von der verteilung der Primzahlen, 3rd edition, Chelsea Publ. Co., pp. 668–669, 1974.Google Scholar
  6. 6.
    W. Narkiewicz, “On distribution of values of multiplicative functions in residue classes,” Acta Arith. 12 (1966/67), 269–279.Google Scholar
  7. 7.
    W. Narkiewicz, “Uniform distribution of sequences of integers in residue classes,” vol. 1087 in Lecture Notes in Math., Springer-Verlag, Berlin, 1984.Google Scholar
  8. 8.
    E. Wirsing, “Über die Zahlen, deren Primteiler einer gegeben Menge angehören,” Arch. der Math. 7 (1956), 263–272.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Thomas Dence
    • 1
  • Carl Pomerance
    • 2
  1. 1.Department of MathematicsAshland UniversityAshland
  2. 2.Department of MathematicsUniversity of GeorgiaAthens

Personalised recommendations