Multibody System Dynamics

, Volume 1, Issue 2, pp 149–188 | Cite as

Multibody System Dynamics: Roots and Perspectives

  • W. Schiehlen


The paper reviews the roots, the state-of-the-art and perspectives of multibody system dynamics. Some historical remarks show that multibody system dynamics is based on classical mechanics and its engineering applications ranging from mechanisms, gyroscopes, satellites and robots to biomechanics. The state-of-the-art in rigid multibody systems is presented with reference to textbooks and proceedings. Multibody system dynamics is characterized by algorithms or formalisms, respectively, ready for computer implementation. As a result simulation and animation are most important. The state-of-the-art in flexible multibody systems is considered in a companion review by Shabana.

Future research fields in multibody dynamics are identified as standardization of data, coupling with CAD systems, parameter identification, real-time animation, contact and impact problems, extension to control and mechatronic systems, optimal system design, strength analysis and interaction with fluids. Further, there is a strong interest on multibody systems in analytical and numerical mathematics resulting in reduction methods for rigorous treatment of simple models and special integration codes for ODE and DAE representations supporting the numerical efficiency. New software engineering tools with modular approaches promise improved efficiency still required for the more demanding needs in biomechanics, robotics and vehicle dynamics.

dynamics of rigid bodies multibody systems computational methods data models parameter identification optimal design strength analysis DAE integration codes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramson, H.N., ‘The dynamic behavior of liquids in moving containers’, NASA-SP-106, Washington, 1966.Google Scholar
  2. 2.
    Ambrosio, J., Pereira, M. and Dias, J., ‘Distributed and discrete nonlinear deformations on multibody dynamics’, Nonlinear Dynamics 10, 1996, 359–379.Google Scholar
  3. 3.
    Ambrosio, J., Pereira, M. and Silva, F., Crashworthiness of Transportation Systems: Structural Impact and Occupant Protection, NATO-ASI Series E, Vol. 332, Kluwer Academic Publishers, Dordrecht, 1997.Google Scholar
  4. 4.
    Amirouche, F.M.L., Computational Methods for Multibody Dynamics, Prentice-Hall, Englewood Cliffs, NJ, 1992.Google Scholar
  5. 5.
    Amirouche, F.M.L. and Xie, M., ‘Explicit matrix formulation of the dynamical equations for flexible multibody systems: Recursive approach’, Computers & Structures 46, 1993, 311–321.Google Scholar
  6. 6.
    Amirouche, F.M.L., Xie, M. and Shareef, N.H., ‘FE modeling of contact conditions in multibody system dynamics’, Nonlinear Dynamics 4, 1993, 83–102.Google Scholar
  7. 7.
    Anantharaman, M. and Hiller, M., ‘Numerical simulation of mechanical systems using methods for differential-algebraic equations’, International Journal for Numerical Methods in Engineering 32, 1991, 1531–1542.Google Scholar
  8. 8.
    Angeles, J. and Kecskeméthy, A., Kinematics and Dynamics of Multibody Systems, CISM Courses and Lectures, Vol. 360, Springer-Verlag, Wien, 1995.Google Scholar
  9. 9.
    Ascher, U. and Petzold, L., ‘Projected implicit Runge—Kutta methods for differential-algebraic equations’, SIAM Journal on Numerical Analysis 28, 1991, 1097–1120.Google Scholar
  10. 10.
    Aseltine, J.A. (ed.), Peaceful Uses of Automation in Outer Space, Plenum Press, New York, 1966.Google Scholar
  11. 11.
    Bae, Dae-Sung and Haug, E.J., ‘Recursive formulation for constraint mechanical system dynamics. Part II: Closed loop systems,’ Mechanics of Structures and Machines 15, 1988, 481–506.Google Scholar
  12. 12.
    Banichuk, N.V., Klimov, D.M. and Schiehlen, W. (eds), Dynamical Problems of Rigid-Elastic Systems and Structures, Springer-Verlag, Berlin, 1991.Google Scholar
  13. 13.
    Bates, L. and Sniatycki, J., ‘Nonholonomic reduction’, Reports on Mathematical Physics 32, 1993, 99–115.Google Scholar
  14. 14.
    Bauer, H.F., ‘Dynamic behaviour of an elastic separating wall in vehicle containers. Part I’, International Journal of Vehicle Design 2, 1975, 44–77.Google Scholar
  15. 15.
    Baumgarte, J., ‘Stabilization of constraints and integrals of motion in dynamical systems’, Computer Methods in Applied Mechanics and Engineering 1, 1972, 1–16.Google Scholar
  16. 16.
    Bestle, D. and Krause, R., ‘Sensitivity of parameter identification on measurement noise’, Problems in Engineering and Mechanics 7, 1992, 37–42.Google Scholar
  17. 17.
    Bestle, D. and Eberhard, P., ‘Automated approach for optimizing dynamic systems’, in Computational Optimal Control, R. Bulirsch and D. Kraft (eds), Birkhäuser, Basel, 1994, 225–235.Google Scholar
  18. 18.
    Bestle, D. and Eberhard, P., NEWOPT/AIMS2.2 — Ein Programmpaket zur Analyse und Optimierung von mechanischen Systemen, User's Manual, Institute B of Mechanics, Stuttgart, 1994.Google Scholar
  19. 19.
    Bestle, D., Analyse und Optimierung von Mehrkörpersystemen, Springer-Verlag, Berlin, 1994.Google Scholar
  20. 20.
    Bestle, D. and Eberhard, P., ‘Multicriteria multimodel design optimization’, in IUTAM Symposium on Optimization of Mechanical Systems, D. Bestle and W. Schiehlen (eds), Kluwer Academic Publishers, Dordrecht, 1996, 33–40.Google Scholar
  21. 21.
    Bestle, D. and Schiehlen, W. (eds), IUTAMSymposium on Optimisation of Mechanical Systems, Kluwer Academic Publishers, Dordrecht, 1996.Google Scholar
  22. 22.
    Bianchi, G. and Schiehlen, W. (eds), Dynamics of Multibody Systems, Springer-Verlag, Berlin, 1986.Google Scholar
  23. 23.
    Blajer, W., ‘Index of differential-algebrahic equations governing the dynamics of constrained mechanical systems’, Applied Mathematical Modelling 16, 1992, 70–77.Google Scholar
  24. 24.
    Blajer, W. and Schiehlen, W., ‘Walking without impacts as a motion/force control problem’, Journal of Dynamic Systems, Measurement, and Control. Trans. ASME 114, 1992, 660–665.Google Scholar
  25. 25.
    Bremer, H. and Pfeiffer, F., Elastische Mehrkörpersysteme, Teubner, Stuttgart, 1992.Google Scholar
  26. 26.
    Buxbaum, O., Betriebsfestigkeit. Sichere und wirtschaftliche Bemessung schwingbruchgef ährdeter Bauteile, Verlag Stahleisen, Düsseldorf, 1986.Google Scholar
  27. 27.
    Chaffin, D.B., ‘A computerized biomechanical model-development for the use in studying gross body actions’, Journal of Biomechanics 2, 1969, 429–441.Google Scholar
  28. 28.
    Chen, K.-H. and Pletcher, R.H., ‘Primitive variable, strongly implicit calculation procedure for viscous flows at all speeds’, AIAA Journal 29, 1993, 1241–1249.Google Scholar
  29. 29.
    Codina, R. and Soto, O., ‘Finite element solution of the Stokes problem with Coriolis force’, in Computational Fluid Dynamics '94. Proceedings of the Second European Fluid Dynamics Conference, S. Wagner, E.H. Hirschel, J. Périaux and R. Piva (eds), Wiley, New York, 1994, 113–120.Google Scholar
  30. 30.
    Daberkow, A., Zur CAD-gest ützten Modellierung von Mehrkörpersystemen, Fortschritt-Berichte, Reihe 20, Nr. 80, VDI-Verlag, Düsseldorf, 1993. äGoogle Scholar
  31. 31.
    Daberkow, A. and Schiehlen, W., ‘Concept, development and implementation of DAMOSC: The object oriented approach to multibody systems’, in Computers in Engineering 1991, Proceedings ASME International Computers in Engineering Conference, K. Ishii (ed.), ASME, New York, 1994, 937–951.Google Scholar
  32. 32.
    D' Alembert, J., Traité de Dynamique, Paris, 1743.Google Scholar
  33. 33.
    Denavit, J. and Hartenberg, R.S., ‘A kinematic motion for lower pair mechanisms based on matrices’, Journal of Applied Mechanics 22, 1955, 215–221.Google Scholar
  34. 34.
    Dürr, R., Neerpasch, U., Schiehlen, W. and Witte, L., ‘Mechatronik und STEP, Standardisierung eines neutralen Datenformats in STEP für die Simulation mechatronischer Systeme’, Produktdaten Journal 2, 1995, 12–19.Google Scholar
  35. 35.
    Eberhard, P., Zur Mehrkriterienoptimierung von Mehrkörpersystemen, Fortschritt-Berichte, Reihe 11, Nr. 227, VDI-Verlag, Düsseldorf, 1996.Google Scholar
  36. 36.
    Eiber, A. and Kauf, A., ‘Berechnete Verschiebungen der Mittelohrknochen unter statischer Belastung’, HNO 42, 1994, 754–759.Google Scholar
  37. 37.
    Eiber, A., Kauf, A. and Schiehlen, W., ‘Biomechanics of the Middle Ear’, in Proceedings of the 9th World Congress on TMM, A. Rovetta (ed.), Edizioni Unicopli, Milano, 1995, 2415–2419.Google Scholar
  38. 38.
    Eiber, A., Kauf, A., Maassen, M.M., Burkhardt, C., Rodriguez, J. and Zenner, H.P., ‘Vergleich von Laservibrometriemessungen und Computersimulationen der Geh örkn öchelchenbewegungen’, HNO 45, 1997, to appear.Google Scholar
  39. 39.
    Eich, E., Projizierende Mehrschrittverfahren zur numerischen Lösung von Bewegungsgleichungen technischer Systeme mit Zwangsbedingungen und Unstetigkeiten, Fortschritt-Berichte, Reihe 18, Nr. 109, VDI-Verlag, Düsseldorf, 1992.Google Scholar
  40. 40.
    Eichberger, A., ‘Benefits of parallel multibody simulation’, International Journal Methods Eng. 37, 1994, 1557–1572.Google Scholar
  41. 41.
    Enos, M.J. (ed.), Dynamics and Control of Mechanical Systems, American Mathematical Society, Providence, 1993.Google Scholar
  42. 42.
    Essen, H., ‘Geometry of nonholonomic dynamics’, Journal of Applied Mechanics 61, 1994, 689–694.Google Scholar
  43. 43.
    Euler, L., ‘Nova methods motum corporum rigidarum determinandi’, Novi Commentarii Academiae Scientiarum Petropolitanae 20, 1776, 208–238. See also Euler, L., Opera Omnia, Series II, Vol. 9, 99–125.Google Scholar
  44. 44.
    Fischer, O., Einf ührung in die Mechanik lebender Mechanismen, Leipzig, 1906.Google Scholar
  45. 45.
    Führer, C., Differential-algebraische Gleichungssysteme in mechanischen Mehrk örpersystemen, Dissertation, Technische Universität München, München, 1988.Google Scholar
  46. 46.
    Führer, C. and Schwertassek, R., ‘Generation and solution of multibody system equations’, International Journal of Non-Linear Mechanics 25, 1990, 127–141.Google Scholar
  47. 47.
    Garcia de Jalón, J. and Bayo, E., Kinematic and Dynamic Simulation of Multibody Systems, Springer-Verlag, New York, 1994.Google Scholar
  48. 48.
    Gear, C.W., ‘Differential-algebraic equation index transformations’, SIAM Journal of Scientific and Statistical Computing 9, 1988, 39–47.Google Scholar
  49. 49.
    Glocker, C. and Pfeiffer, F., ‘Dynamical systems with unilateral contacts’, Nonlinear Dynamics 3, 1992, 245–259.Google Scholar
  50. 50.
    Glocker, C. and Pfeiffer, F., ‘Complementarity problems in multibody systems with planar friction’, Archive of Applied Mechanics 63, 1993, 452–463.Google Scholar
  51. 51.
    Grammel, R., Der Kreisel — Seine Theorie und seine Anwendungen, First ed., Vieweg, Braunschweig, 1920. Second ed., Springer-Verlag, Berlin, 1950.Google Scholar
  52. 52.
    Grübel, G., Finsterwalder, R., Gramlich, G., Joos, H.-D. and Lewald, A., ‘ANDECS-A computation environment for control applications of optimization’, Computational Optimal Control, R. Bulirsch and D. Kraft (eds), Birkhäuser, Basel, 1994, 237–254.Google Scholar
  53. 53.
    Häfele, P. and Dietmann, H., ‘Weiterentwicklung der Modifizierten Oktaederschubspannnungshypothese (MOSH)’, Konstruktion 46, 1994, 51–58.Google Scholar
  54. 54.
    Haibach, E., Betriebsfestigkeit. Verfahren und Daten zur Bauteilberechnung, VDI-Verlag, Düsseldorf, 1989.Google Scholar
  55. 55.
    Hairer, E. and Wanner, G., Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1991.Google Scholar
  56. 56.
    Hamel, G., Theoretische Mechanik, Springer-Verlag, Berlin, 1949.Google Scholar
  57. 57.
    Han, I. and Gilmore, B.J., ‘Multi-body impact motion with friction: Analysis, simulation and experimental validation’, Journal of Mechanical Design 115, 1993, 412–422.Google Scholar
  58. 58.
    Hansen, J.M. and Tortorelli, D.A., ‘An efficient method for synthesis of mechanisms using an optimizationmethod’, in Optimization of Mechanical System, D. Bestle and W. Schiehlen (eds), Kluwer Academic Publishers, Dordrecht, 1996, 129–138.Google Scholar
  59. 59.
    Haug, E.J. (ed.), Computer-Aided Analysis and Optimization of Mechnical System Dynamics, Springer-Verlag, Berlin, 1984.Google Scholar
  60. 60.
    Haug, E.J., Computer-Aided Kinematics and Dynamics of Mechanical Systems, Allyn and Bacon, Boston, 1989.Google Scholar
  61. 61.
    Haug, E.J., ‘High speed multibody dynamic simulation and its impact on man-machine systems’, in Advanced Multibody System Dynamics, W. Schiehlen (ed.), Kluwer Academic Publishers, Dordrecht, 1993, 1–18.Google Scholar
  62. 62.
    Haug, J., Zur Modellierung aktiv geregelter elastischer Mehrkörpersysteme, Fortschritt-Berichte, Reihe 11, Nr. 230, VDI-Verlag, Düsseldorf, 1996.Google Scholar
  63. 63.
    Hiller, M., ‘Modeling and simualtion of complex multibody systems in mechatronic systems’, '91 - Machine Systems, Proceedings Eur. Eng. Res. and Tech. Transfer Congress, Birmingham, 1991, 159–163.Google Scholar
  64. 64.
    Hoffmann, M. and Seeger, T., ‘Mehrachsige Kerbbeanspruchung bei proportionaler Belastung’, Konstruktion 38, 1986, 63–70.Google Scholar
  65. 65.
    Hooker, W.W. and Margulies, G., ‘The dynamical attitude equations for n-body satellite’, Journal on Astronomical Science 12, 1965, 123–128.Google Scholar
  66. 66.
    Hou, M., Descriptor Systems: Observers and Fault Diagnosis, Fortschritt-Berichte, Reihe 8, Nr. 482, VDI-Verlag, Düsseldorf, 1995.Google Scholar
  67. 67.
    Hsia, T.C., System Identification. Least Squares Methods, Lexingon Books, Lexington, 1997.Google Scholar
  68. 68.
    Hung, R. J. and Pan, H. L., ‘Modelling of sloshing modulated angular momentum fluctuations actuated by gravity gradient associated with spacecraft slew motion’, Applied Mathematical Modelling 20, 1996, 399–409.Google Scholar
  69. 69.
    Huston, R.L. and Passerello, C.E., ‘On the dynamics of a human body model’, Journal on Biomechanics 4, 1971, 369–378.Google Scholar
  70. 70.
    Huston, R.L., Multibody Dynamics, Butterworth-Heinemann, Boston, 1990.Google Scholar
  71. 71.
    Huston, R.L., ‘Multibody dynamics — modeling and analysis methods’, Applied Mechanics Review 44, 1991, 109–117 and Applied Mechanics Review 49, 1996, 35–40.Google Scholar
  72. 72.
    Hüttenbrink, K.B., ‘Die funktionelle Bedeutung der Aufhängebänder der Gehörkn öchelchenkette’, Laryngorhinotologie 68, 1989, 146–151.Google Scholar
  73. 73.
    Ider, S.K., ‘FE based recursive formulation for real time dynamic simulation of flexible multibody systems’, Computers & Structures 40, 1991, 939–945.Google Scholar
  74. 74.
    Isermann, R., Prozeß identifikation, Springer-Verlag, Berlin, 1992.Google Scholar
  75. 75.
    Jager, M. de, ‘Mathematical head-neck models for acceleration impacts’, Ph.D. Thesis, University of Technology, Eindhoven, 1996.Google Scholar
  76. 76.
    Jourdain, P.E.B., ‘Note on an analogue at Gauss' principle of least constraints’, Quarterly Journal on Pure Applied Mathematics 40, 1909, 153–197.Google Scholar
  77. 77.
    Junker, F., ‘Modular-hierarchisch strukturierte Modellbildung mechanischer Systeme’, Archive of Applied Mechanics 65, 1995, 227–245.Google Scholar
  78. 78.
    Kalaba, R.E. and Udwadia, F.E., ‘Equations of motion for nonholonomic, constrained dynamical systems via Gauss's principle’, Journal of Applied Mechanics 60, 1993, 662–668.Google Scholar
  79. 79.
    Kallenbach, R., Kovarianzmethoden zur Parameteridentifikation zeitkontinuierlicher Systeme, Fortschritt-Berichte, Reihe 11, Nr. 92, VDI-Verlag, Düsseldorf, 1987.Google Scholar
  80. 80.
    Kane, T.R. and Scher, M.P., ‘A dynamical explanation of the falling cat phenomena’, International Journal on Solids Structures 5, 1969, 663–670.Google Scholar
  81. 81.
    Kane, T.R. and Levinson, D.A., Dynamics: Theory and Applications, McGraw-Hill, New York, 1985.Google Scholar
  82. 82.
    Kim, S.-S. and Haug, E.J., ‘Recursive formulation for flexible multibody dynamics. Part II. Closed loop systems’, Computer Methods in Applied Mechanics and Engineering 74, 1989, 251–269.Google Scholar
  83. 83.
    Kim, S.J. and Jones, J.D., ‘Optimal design of piezoactuators for active noise and vibration control’, AIAA Journal 29, 1991, 2047–2053.Google Scholar
  84. 84.
    Kortüm, W. and Schiehlen, W., ‘General purpose vehicle system dynamics software based on multibody formalisms’, Vehicle System Dynamics 14, 1985, 229–263.Google Scholar
  85. 85.
    Kortüm, W. and Sharp, R.S., Multibody Computer Codes in Vehicle System Dynamics, Swets & Zeitlinger, Amsterdam, 1993.Google Scholar
  86. 86.
    Kortüm, W. and Lugner, P., Systemdynamik und Regelung von Fahrzeugen, Springer-Verlag, Berlin, 1996.Google Scholar
  87. 87.
    Krause, R. and Schiehlen, W., ‘Parametric modeling of nonlinearities by covariance analysis’, in EUROMECH 280, Proceedings International Symposium on Identification of Nonlinear Mechanical Systems by Dynamic Tests, L. Jezequel and C.-H. Lamarque (eds), Balkema, Rotterdam, 1992, 157–158.Google Scholar
  88. 88.
    Kreuzer, E., Numerische Untersuchung nichtlinearer dynamischer Systeme, Springer-Verlag, Berlin, 1987.Google Scholar
  89. 89.
    Lagrange, J.-L., Mécanique Analytique, L'Académie Royal des Sciences, Paris, 1788.Google Scholar
  90. 90.
    Lankarani, H.M. and Nikravesh, P.E., ‘Canonical impulse-momentum equations for impact analysis of multibody systems’, Journal of Mechanical Design 114, 1992, 180–186.Google Scholar
  91. 91.
    Leister, G., Beschreibung und Simulation von Mehrkörpersystemen mit geschlossenen kinematischen Schleifen, Fortschritt-Berichte, Reihe 11, Nr. 167, VDI-Verlag, Düsseldorf, 1992.Google Scholar
  92. 92.
    Levinson, D.A., ‘Equations of motion for multi-rigid-body systems via symbolic manipulation’, Journal of Spacecraft and Rockets 14, 1977, 479–487.Google Scholar
  93. 93.
    Liang, Li-Fu, ‘Variational problem of general displacement in nonholonomic systems’, Acta Mechanica Solida Sinica 6, 1993, 357–364.Google Scholar
  94. 94.
    Lubich, Ch., ‘Extrapolation integrators for constrained multibody systems’, IMPACT Comp. Sci. Eng. 3, 1991, 213–234.Google Scholar
  95. 95.
    Lubich, Ch., Nowak, U., Pöhle, U. and Engstler, Ch., MEXX — Numerical Software for the Integration of Constrained Mechanical Multibody Systems, Konrad-Zuse-Zentrum für Informationstechnik, Berlin, 1992, Preprint SC 92–12.Google Scholar
  96. 96.
    Lückel, J., Integration verteilter Systeme der Mechatronik mit besonderer Berücksichtigung des Echtzeitverhaltens, Arbeitsberichte 1993/94 und 1994/95, Unversität Gesamthochschule Paderborn, Paderborn, 1994 and 1995.Google Scholar
  97. 97.
    Luo, S., ‘Generalized Noetherss theorem of nonholonomic nonpotential system in noninertial reference frames’, Applied Mathematics and Mechanics 12, 1991, 927–934.Google Scholar
  98. 98.
    Luo, Yao-huang and Zhao, Yong-da, ‘Routh's equations for general nonholonomic mechanical systems of variable mass’, Applied Mathematics and Mechanics 14, 1993, 285–298.Google Scholar
  99. 99.
    Magnus, K., Kreisel-Theorie und Anwendungen, Springer-Verlag, Berlin, 1971.Google Scholar
  100. 100.
    Magnus, K. (ed.), Dynamics of Multibody Systems, Springer-Verlag, Berlin, 1978.Google Scholar
  101. 101.
    Melzer, F., Symbolisch-numerische Modellierung elastischer Mehrkörpersysteme mit Anwendung auf rechnerische Lebensdauervorhersage, Fortschritt-Berichte, Reihe 20, Nr. 139, VDI-Verlag, Düsseldorf, 1994.Google Scholar
  102. 102.
    Melzer, F., ‘Symbolic computations in flexiblemultibody system’, Nonlinear Dynamics 9, 1996, 147–163.Google Scholar
  103. 103.
    Miner, M.A., ‘Cumulative damage in fatigue’, Journal of Applied Mechanics 12, 1945, 159–169.Google Scholar
  104. 104.
    Mladenova, C.D., ‘Kinematics and dynamics of a rigid body in nonholonomic coordinates’, Systems & Control Letters 22, 1994, 257–265.Google Scholar
  105. 105.
    Modi, V.J. and Suleman, A.C., ‘Approach to dynamics and control of orbiting flexible structures’, International Journal for Numerical Methods in Engineering 32, 1991, 1727–1748.Google Scholar
  106. 106.
    Morecki, A., Biomechanics of Engineering. Modelling, Simulation, Control, Springer-Verlag, Wien, 1987.Google Scholar
  107. 107.
    Müller, P.C., Stabilit ät und Matrizen, Springer-Verlag, Berlin, 1977.Google Scholar
  108. 108.
    Müller, P.C., Rentrop, P., Kortüm, W. and Führer, C., ‘Constrained mechanical systems in descriptor form: Identification, simulation and control’, Advanced Multibody System Dynamics, W. Schiehlen (ed.), Kluwer Academic Publishers, Dordrecht, 1993, 451–456.Google Scholar
  109. 109.
    Müller, P.C., ‘Descriptor Systems: A New Way to Model Mechatronic Systems’, in Proceedings 3rd European Control Conference, Vol. 3, Part 2, 1995, 2725–2729.Google Scholar
  110. 110.
    Natke, H.G., Einf ührung in Theorie und Praxis der Zeitreihen-und Modalanalyse, Vieweg, Braunschweig, 1983.Google Scholar
  111. 111.
    Newton, I., Philosophiae Naturalis Principia Mathematica, Royal Society, London, 1687.Google Scholar
  112. 112.
    Nigg, B.M. and Herzog, W., Biomechanics of theMusculo-Skeletal System, JohnWiley& Sons, Toronto, 1994.Google Scholar
  113. 113.
    Nikravesh, P.E., Computer-Aided Analysis of Mechanical Systems, Prentice-Hall, Engelwood Cliffs, NJ, 1988.Google Scholar
  114. 114.
    O'Heron, P., Nikravesh, P. and Arabyan, A., ‘A multibody model simulating tilt wing conversion’, Technical Report CAEL–91–5, Computer Aided Engineering Laboratory, University of Arizona, 1991.Google Scholar
  115. 115.
    Onchi, Y., ‘Mechanism of the middle ear’, Journal of the Acoustical Society of America 33, 1961, 794–805.Google Scholar
  116. 116.
    östreich, M., Hinrichs, N. and Popp, K., ‘Bifurcation and stability analysis of a non-smooth friction oscillator’, Archive of Applied Mechanics 66, 1996, 301–314.Google Scholar
  117. 117.
    Ott, E., Grebogi, C. and Yorke, J.A., ‘Controlling chaos’, Physical Review Letters, 1990, 1196–1199.Google Scholar
  118. 118.
    Otter, M., Hocke, M., Daberkow, A. and Leister, G., ‘An object oriented data model for multibody systems’, in Advanced Multibody System Dynamics, W. Schiehlen (ed.), Kluwer Academic Publishers, Dordrecht, 1993, 19–48.Google Scholar
  119. 119.
    Palmgren, A., ‘Die Lebensdauer von Kugellagern’, VDI-Zeitschrift 69, 1924, 339–341.Google Scholar
  120. 120.
    Päsler, M., Prinzipe der Mechanik, De Gruyter, Berlin, 1968.Google Scholar
  121. 121.
    Pennestri, E. and Freudenstein, F., ‘Systematic approach to powerflow and static-force analysis in epicyclic spur-gear trains’, Journal of Mechanical Design 115, 1993, 639–644.Google Scholar
  122. 122.
    Pereira, M.F.O.S. and Ambrosio, J.A.C. (eds), Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, Kluwer Academic Publishers, Dordrecht, 1994.Google Scholar
  123. 123.
    Petzold, L.R., ‘An efficient numerical method for solving stiff and nonstiff systems of ordinary differential equations’, SIAM Journal on Numerical Analysis 18, 1981, 455–479.Google Scholar
  124. 124.
    Pfeiffer, F., ‘Linearisierte Eigenschwingungen von Treibstoff in beliebigen Behältern’, Zeitschrift für Flugwissenschaft 16, 1968, 188–194.Google Scholar
  125. 125.
    Pfeiffer, F. and Gebler, B., ‘A multistage-approach to the dynamics and control of elastic robots’, in 1988 IEEE International Conference on Robotics and Automation, Vol. 1, IEEE Comput. Soc. Press, Washington, 1988, 2–8.Google Scholar
  126. 126.
    Pfeiffer, F. and Glocker, C., Multibody Dynamics with Unilateral Contacts, Wiley, New York, 1996.Google Scholar
  127. 127.
    Popov, G., Sankar, S., Sankar, T.S. and Vatistas, G.H., ‘Liquid sloshing in rectangular road containers’, Computers & Fluids 21, 1992, 551–559.Google Scholar
  128. 128.
    Popov, G., Sankar, S., Sankar, T.S. and Vatistas, G.H., ‘Dynamics of liquid sloshing in horizontal cylindrical road containers’, Proceedings of the Institute of Mechanical Engineers Part C 207, 1993, 399–406.Google Scholar
  129. 129.
    Popp, K. and Stelter, P., ‘Stick-slip vibrations and chaos’, Philosophical Transactions of the Royal Society of London A336, 1990, 89–105.Google Scholar
  130. 130.
    Popp, K. and Schiehlen, W., Fahrzeugdynamik, Teubner, Stuttgart, 1993.Google Scholar
  131. 131.
    Prasad, P. and Chou, C.C., ‘A review of mathematical occupant simulation models’, in Crashworthiness and Occupant Protection in Transportation Systems, ASME AMD Vol. 106/BED Vol. 13, T. Khalil and A. King (eds), 1989, 36–112.Google Scholar
  132. 132.
    Rakheja, S., Sankar, S. and Ranganathan, R., ‘Roll plane analysis of articulated tank vehicles during steady turning’, Vehicle System Dynamics 17, 1988, 81–104.Google Scholar
  133. 133.
    Rakheja, S., Ranganathan, R. and Sankar, S., ‘Field testing and validation of directional dynamics model of a tank truck’, International Journal of Vehicle Design 13, 1992, 251–275.Google Scholar
  134. 134.
    Ranganathan, R., Rakheja, S. and Sankar, S., ‘Steady turning stability of partially filled tank vehicles with arbitrary tank geometry’, Journal of Dynamic Systems, Measurement, and Control 111, 1989, 481–489.Google Scholar
  135. 135.
    Ranganathan, R., Rakheja, S. and Sankar, S., ‘Influence of liquid load shift on the dynamic response of articulated tank vehicles’, Vehicle System Dynamics 19, 1990, 177–200.Google Scholar
  136. 136.
    Ranganathan, R. and Yang, Y.S., ‘Impact of liquid load shift on the braking characteristics of partially filled tank vehicles’, Vehicle System Dynamics 26, 1996, 223–240.Google Scholar
  137. 137.
    Rauh, J. and Rill, G., Simulation von Tankfahrzeugen, VDI-Berichte 1007, VDI-Verlag, Düsseldorf, 1992, 681–697.Google Scholar
  138. 138.
    Rismantab-Sany, J. and Shabana, A.A., ‘Impulsive motion of nonholonomic deformable multibody systems. Part I, Kinematic and dynamic equations’, Journal of Sound and Vibration 127, 1988, 193–204.Google Scholar
  139. 139.
    Rismantab-Sany, J. and Shabana A.A., ‘Numerical solution of differential-algebraic equations of motion of deformable mechanical systems with nonholonomic constraints’, Computers & Structures 33, 1989, 1017–1029.Google Scholar
  140. 140.
    Roberson, R.E. and Wittenburg, J., ‘A dynamical formalism for an arbitrary number of interconnected rigid bodies, with reference to the problem of satellite attitude control’, Proceedings 3rd Congr. Int. Fed. Autom. Control, Butterworth, Vol. 1, Book 3, Paper 46 D, London, 1967.Google Scholar
  141. 141.
    Roberson, R.E. and Schwertassek, R., Dynamics ofMultibody Systems, Springer-Verlag, Berlin, 1988.Google Scholar
  142. 142.
    Rükgauer, A. and Schiehlen, W., ‘Efficient simulation of the behaviour of articulated vehicles’, in Proceedings AVEC'96, H. Wallentowitz (ed.), Aachen University of Technology, Aachen, 1996, 1057–1069.Google Scholar
  143. 143.
    Rükgauer, A., ‘Modulare Simulationmechatronischer SystememitAnwendung in der Fahrzeugdynamik’, Dissertation, Universität Stuttgart, Stuttgart, 1997.Google Scholar
  144. 144.
    Sanetra, C., ‘Untersuchung zum Festigkeitsverhalten bei mehrachsiger Randombeanspruchung unter Biegung und Torsion’, Dissertation, Technische Hochschule Clausthal, Clausthal, 1991.Google Scholar
  145. 145.
    Schäfer, P., ‘Echtzeitsimulation aktiver Mehrkörpersysteme auf Transputernetzen’, Fortschritt-Berichte, Reihe 11, Nr. 202, VDI-Verlag, Düsseldorf, 1994.Google Scholar
  146. 146.
    Schaller, C., Führer, C. and Simeon, B., ‘Simulation of multi-body systems by a parallel extrapolation method’, Mechanics of Structures and Machines 22, 1994, 473–486.Google Scholar
  147. 147.
    Schiehlen, W., Dynamics of Satellites, Springer-Verlag, Wien, 1970.Google Scholar
  148. 148.
    Schiehlen, W. and Kreuzer, E., ‘Rechnergest ützes Aufstellen der Bewegungsgleichungen gewöhnlicher Mehrkörpersysteme’, Ingenieur-Archiv 46, 1977, 185–194.Google Scholar
  149. 149.
    Schiehlen, W., Technische Dynamik, Teubner, StuttgartGoogle Scholar
  150. 150.
    Schiehlen, W. and Kallenbach, R.G., ‘Identification of robot system parameters’, in Theory of Robots. Proceedings IFAC/IFIP/IMACS Symposium, P. Kopacek, I. Troch, and K. Desoyer (eds), Pergamon Press, Oxford, 1988, 119–124.Google Scholar
  151. 151.
    Schiehlen, W. and Schäfer, P., ‘Modeling of vehicles with controlled components’, in The Dynamics of Vehicles on Roads and on Tracks, Proceedings 11th IAVSD Symposium, R.J. Anderson (ed.), Swets & Zeitlinger, Amsterdam, 1989, 488–501.Google Scholar
  152. 152.
    Schiehlen, W. (ed.), Multibody Systems Handbook, Springer-Verlag, BerlinGoogle Scholar
  153. 153.
    Schiehlen, W., ‘Computational aspects in multibody system dynamics’, Computer Methods in Applied Mechanics and Engineering 90, 1991, 569–582.Google Scholar
  154. 154.
    Schiehlen, W., ‘Dynamics and control of nonholonomic mobile robot systems’, in Preprints of Symposium on Robot Control 1994, Vol. 1, L. Sciavicco, C. Bonivento and F. Nicolo (eds), Napoli, 1994, 329–334.Google Scholar
  155. 155.
    Schieschke, R.-G., Konzeption und Realisierung komplexer fahrdynamischer Simulationsmodelle am Beispiel eines Sattelzuges mit beweglicher Ladung, Fortschritt-Berichte, Reihe 12, Nr. 106, VDI-Verlag, Düsseldorf, 1988.Google Scholar
  156. 156.
    Schirle, Th., ‘Kopplung von Mehrkörpersystemen über einen nichtminimalen Ansatz’, Studienarbeit STUD-134, Institut B für Mechanik, Universität Stuttgart, Stuttgart, 1996.Google Scholar
  157. 157.
    Schirm, W., Symbolisch-numerische Behandlung von kinematischen Schleifen in Mehrkörpersystemen, Fortschritt-Berichte, Reihe 11, Nr. 198, VDI-Verlag, Düsseldorf, 1993.Google Scholar
  158. 158.
    Schneider, E., Popp, K. and Irretier, H., ‘NoiseGeneration in RailwayWheels due to Rail-Wheel Contact Forces’, J. Sound Vibr. 120, 1989, 227–244.Google Scholar
  159. 159.
    Schüpphaus, R. and Müller, P.C., ‘Control analysis and synthesis of linear mechanical descriptor systems’, Advanced Multibody System Dynamics, W. Schiehlen (ed.), Kluwer Academic Publishers, Dordrecht, 1993, 463–468.Google Scholar
  160. 160.
    Schwarz, R.G., Identifikation mechanischer Mehrkörpersysteme, Fortschritt-Berichte, Reihe 8, Nr. 30, VDI-Verlag, Düsseldorf, 1980.Google Scholar
  161. 161.
    Schweitzer, G. and Mansour, M. (eds), Dynamics of Controlled Mechanical Systems, Springer-Verlag, Berlin, 1989.Google Scholar
  162. 162.
    Schweitzer, G., Traxler, A. and Bleuler, H., Magnetlager: Grundlagen, Eigenschaften und Anwendungen berührungsfreier elektromagnetischer Lager, Springer-Verlag, Berlin, 1993.Google Scholar
  163. 163.
    Schweitzer, G, ‘Mechatronics — basics, objectives, examples’, Journal of Systems and Control Engineering 210, Proceedings IMechE, 1996, 1–11.Google Scholar
  164. 164.
    Schweitzer, G., ‘Mechatronics for the design of human oriented machines’, IEEE/ASME Trans. on Mechatronics 2, 1997, to appear.Google Scholar
  165. 165.
    Schwertassek, R. and Roberson, R.E., ‘A perspective on computer-oriented multibody dynamical formalisms and their implementations’, in Dynamics of Multibody Systems, G. Bianchi and W. Schiehlen (eds), Springer-Verlag, Berlin, 1986, 263–273.Google Scholar
  166. 166.
    Schwerin, R.v. and Winckler, M., A Guide to the Integrator Library MBSSIM Version 1.00, Interdisziplinäres Zentrum fürWissenschaftliches Rechnen (IWR), Preprint 94–75, Heidelberg, 1994.Google Scholar
  167. 167.
    Segel, L. (ed.), The Dynamics of Vehicles on Roads and Tracks, Swets& Zeitlinger, Lisse, 1996.Google Scholar
  168. 168.
    Seydel, R., From Equilibrium to Chaos, Practical Bifurcation and Stability Analysis, Elsevier, New York, 1988.Google Scholar
  169. 169.
    Shabana, A.A. and Rismantab-Sany, J., ‘Impulsive motion of nonholonomic deformable multibody systems. Part II: Impact analysis’, Journal Sound Vib. 127, 1988, 205–219.Google Scholar
  170. 170.
    Shabana, A.A., Dynamics of Multibody Systems, Wiley, New York, 1989.Google Scholar
  171. 171.
    Shabana, A.A., Computational Dynamics, Wiley, New York, 1994.Google Scholar
  172. 172.
    Shabana, A.A., ‘Flexible Multibody Dynamics: Review of Past and Recent Developments’, Multibody System Dynamics 1, 1997, this issue.Google Scholar
  173. 173.
    Simeon, B., Führer, C. and Rentrop, P., ‘Differential-algebraic equations in vehicle system dynamics’, Survey on Math. in Industry 1, 1991, 1–37.Google Scholar
  174. 174.
    Simeon, B., Numerische Integration mechanischer Mehrk örpersysteme: Projizierende Deskriptorformen, Algorithmen und Rechenprogramme, Fortschritt-Berichte, Reihe 20, Nr. 130, VDIVerlag, DüsseldorfGoogle Scholar
  175. 175.
    Slibar, A. and Troger, H., ‘Das stationäre Fahrverhalten des Tank-Sattelaufliegers’, in Proceedings IUTAM-Symposium, H.B. Pacejka (ed.), Swets & Zeitlinger, Amsterdam, 1976, 152–172.Google Scholar
  176. 176.
    Stadler, W. (ed.), Multicriteria Optimization in Engineering and in the Sciences, Plenum Press, New York, 1988.Google Scholar
  177. 177.
    Stadler, W., Analytical Robotics and Mechatronics, McGraw-Hill, London, 1995.Google Scholar
  178. 178.
    Stasche, N., Foth, H.J. and Hörmann, K., ‘Laser-Doppler-Vibrometrie des Trommelfells’, HNO 41, 1993, 1–6.Google Scholar
  179. 179.
    Stejskal, V. and Valásek, M., Kinematics and Dynamimcs of Machinery, Marcel Dekker, New York, 1996.Google Scholar
  180. 180.
    Stelzle, W., Kecskeméthy, A. and Hiller, M., ‘A comperative study of recursive methods’, Archive of Applied Mechanics 66, 1995, 9–19.Google Scholar
  181. 181.
    Szabó, I., Geschichte der mechanischen Prinzipien, Birkhäuser, Basel, 1977.Google Scholar
  182. 182.
    Thomson, B., Neerpasch, U. and Schiehlen, W., DAMOS-C ein neutrales Datenformat zur standardisierten Anbindung von MKS an Simulationssysteme mit offener Systemarchitektur, VDI-Berichte 1153, VDI-Verlag, Düsseldorf, 1994, 183–205.Google Scholar
  183. 183.
    Troger, H. and Steindl, A., Nonlinear Stability and Bifurcation Theory, Springer-Verlag, Wien, 1991.Google Scholar
  184. 184.
    Troost, A., Akin, O. and Klubberg, F., ‘Dauerfestigkeitsverhalten metallischer Werkstoffe bei zweiachsiger Beanspruchung durch drei phasenverschoben schwingende Lastspannungen’, Konstruktion 39, 1987, 479–488.Google Scholar
  185. 185.
    Tsai, F.F. and Haug, E.J., ‘Real-time multibody system dynamic simulation. Part I: A parallel algorithm and numerical results’, Mechanics of Structures and Machines 19, 1991, 99–127.Google Scholar
  186. 186.
    Tsai, F.F. and Haug, E.J., ‘Real-time multibody system dynamic simulation. Part II: A modified recursive formulation and topological analysis’, Mechanics of Structures and Machines 19, 1991, 129–162.Google Scholar
  187. 187.
    Uicker, J.J. Jr., ‘On the dynamic analysis of spatial linkages using 4 by 4 matrices’, Ph.D. Thesis, Northwestern University, Evanston, 1965.Google Scholar
  188. 188.
    Van Campen, D. (ed.), Interaction between Dynamics and Control in Advanced Mechanical Systems, Kluwer Academic Publishers, Dordrecht, 1997.Google Scholar
  189. 189.
    Vukobratovic, M., Frank, A.A. and Juricic, D., ‘On the stability of biped locomotion’, IEEE Transactions on Biomedical Engineering BME-17, 1970, 25–36.Google Scholar
  190. 190.
    VukobratoviĆc, M. and StokiĆc, D., Control of Manipulation Robots, Springer-Verlag, Berlin, 1982.Google Scholar
  191. 191.
    Wallentowitz, H. (ed.), AVEC'96, Proceedings International Symposium on Advanced Vehicle Control, Aachen University of Technology, Aachen, 1996.Google Scholar
  192. 192.
    Watson, P. and Dabell, B.J., ‘Cycle counting and fatigue damage’, J. Soc. Env. Eng. 9, 1976, 3–8.Google Scholar
  193. 193.
    Watt, A., Fundamentals of Three-Dimensional Computer Graphics, Addison-Wesley, Reading, MA, 1989.Google Scholar
  194. 194.
    Wittenbauer, F., Graphische Dynamik, Springer-Verlag, Berlin, 1923.Google Scholar
  195. 195.
    Wittenburg, J., Dynamics of Systems of Rigid Bodies, Teubner, Stuttgart, 1977.Google Scholar
  196. 196.
    Yu, Hui-dan, Zhang, Jie-fang and Xu, You-shen, ‘Noether's theory for nonholonomic systems relative to non-inertial reference frame’, Applied Mathematics and Mechanics 14, 1993, 527–536.Google Scholar
  197. 197.
    Zenner, H. and Liu, J., ‘Vorschlag zur Verbesserung der Lebensdauerabschätzung nach dem Nennspannungskonzept’, Konstruktion 44, 1992, 9–17.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • W. Schiehlen
    • 1
  1. 1.Institute B of MechanicsUniversity of StuttgartStuttgartGermany

Personalised recommendations