Advertisement

Plant Ecology

, Volume 129, Issue 2, pp 135–140 | Cite as

Growth rates and morphological adaptations of aquatic and terrestrial forms of amphibious Littorella uniflora (L.) Aschers.

  • Søren Laurentius Nielsen
  • Kaj Sand-Jensen
Article

Abstract

Morphological – anatomical features of the terrestrial and the aquatic life form of the rosette species Littorella uniflora, inhabiting nutrient poor soils of oligotrophic lakes, were investigated together with growth rates of both life forms and of transplants. Growth rates were the same for the two life forms. However, growth of transplanted plants was somewhat reduced by transition from one environment to another. This was especially true for aquatic plants, which may be stressed by desiccation when moved to the terrestrial environment. The morphological – anatomical differences between the life forms were small compared with many other amphibious species which produce highly specialized leaves and life forms in air and under water. It is suggested that the conservative leaf morphology of Littorella is a consequence of the high dependence on rhizospheric CO2 of both the aquatic and the terrestrial form of Littorella, making production of leaves specialized for carbon uptake in one specific environment unnecessary.

Amphibious plants Growth rate Littorella uniflora Morphological adaptations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boston, H. L. & Adams, M. S. 1983. Evidence of Crassulacean acid metabolism in two North American isoetids. Aquatic Bot. 15: 381–386.Google Scholar
  2. Boston, H. L. & Adams, M. S. 1987. Productivity, growth and photosynthesis of two small ‘isoetid’ plants, Littorella uniflora and Isoetes macrospora. J. Ecol. 75: 333–350.Google Scholar
  3. Boston, H.L.; Adams, M.S. & Pienkowski, T.P. 1987. Utilization of sediment CO2 by selected North American isoetids. Ann. Bot. 60: 485–494.Google Scholar
  4. Chabot, B. F. & Hicks, D. J. 1982. The ecology of leaf life spans. Ann. Rev. Ecol. Syst. 13: 229–259.Google Scholar
  5. Bristow, J. M. 1969. The effects of carbon dioxide on the growth and development of amphibious plants. Can. J. Bot. 47: 1803–1808.Google Scholar
  6. Bristow, J. M. & Looi, A. S. 1968. Effects of carbon dioxide on the growth andmorphogenesis of Marsilea. Am. J. Bot. 55: 884–889.Google Scholar
  7. Christiansen, R., Skovmand Friis, N. J. & Søndergaard, M. 1985. Leaf production and nitrogen and phosphorous tissue content of Littorella uniflora (L.) Aschers. in relation to nitrogen and phosphorous enrichment of the sediment in oligotrophic Lake Hampen, Denmark. Aquatic Bot. 23: 1–11.Google Scholar
  8. Cook, S. A. & Johnson, M. P. 1968. Adaptation to heterogenous environments. I. Variation in heterophylly in Ranunculus flammula L. Evolution 22: 496–516.Google Scholar
  9. Gerloff, G. C. & Krombholz, P. H. 1966. Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants. Limnol. Oceanography 11: 529–537.Google Scholar
  10. Grace, J. B. 1989. Effects of water depth on Typha latifolia and Typha domingensis. Am. J. Bot. 76: 762–768.Google Scholar
  11. Hostrup, O. & Wiegleb, G. 1991. Anatomy of leaves of submerged and emergent forms of Littorella uniflora (L.) Ascherson. Aquatic Bot. 39: 195–210.Google Scholar
  12. Hutchinson, G. E. 1975. A Treatise on limnology, Vol. III: Limnological Botany. Wiley, New York.Google Scholar
  13. Johnson, M. P. 1967. Temperature dependent leaf morphogenesis in Ranunculus flabellaris. Nature 214: 1354–1355.Google Scholar
  14. Kane, M. E. & Albert, L. S. 1987. Absisic acid induces aerial leaf morphology and vasculature in submerged Hippuris vulgaris L. Aquatic Bot. 28: 81–88.Google Scholar
  15. Koroleff, F. 1983. Determination of phosphorus. Pp. 125–139. In: Grasshoff, K., Ehrhardt, M. & Kremling, K. (eds) Methods of seawater analysis, 2nd edn. Verlag-Chemie, Nürnberg.Google Scholar
  16. Maberly, S. C. & Spence, D. H. N. 1989. Photosynthesis and photorespiration in freshwater organisms: Amphibious plants. Aquatic Bot. 34: 267–286.Google Scholar
  17. Madsen, T. V. 1985. A community of submerged aquatic CAM plants in Lake Kalgaard, Denmark. Aquatic Bot. 23:97–108.Google Scholar
  18. Madsen, T. V. 1987. The effect of different growth conditions on dark and light carbon assimilation in Littorella uniflora. Physiol. Plant. 70: 183–188.Google Scholar
  19. Madsen, T.V. & Breinholt, M. 1995. Effects of air contact on growth, inorganic carbon sources, and nitrogen uptake by an amphibious freshwater macrophyte. Plant Physiol. 107: 149–154.Google Scholar
  20. Madsen, T.V. & Sand-Jensen, K. 1991. Photosynthetic carbon assimilation in aquatic macrophytes. Aquatic Bot. 41: 5–40.Google Scholar
  21. Moeslund, B., Løjtnant, B., Mathiesen, H., Mathiesen, L., Pedersen, A. & Thyssen, N. 1990. Danske vandplanter. Vejledning i bestemmelse af planter i søer og vandløb (in Danish). The Danish Environmental Protection Agency, Copenhagen.Google Scholar
  22. Nielsen, S. L. 1993. A comparison of aerial and submerged photosynthesis in some Danish amphibious plants. Aquatic Bot. 45: 27–40.Google Scholar
  23. Nielsen, S. L. & Sand-Jensen, K. 1989. Regulation of photosynthetic rates of submerged rooted macrophytes. Oecologia 81: 364–368Google Scholar
  24. Nielsen, S. L. & Sand-Jensen, K. 1991. Variation in growth rates of submerged rooted ma-crophytes. Aquatic Bot. 39: 109–120.Google Scholar
  25. Nielsen, S. L. & Sand-Jensen, K. 1993. Photosynthetic implications of heterophylly in Batrachium peltatum (Schrank) Presl. Aquatic Bot. 44: 361–371.Google Scholar
  26. Nielsen, S. L., Gacia, E. & Sand-Jensen, K. 1991. Land plants of amphibious Littorella uniflora (L.) Aschers. maintain utilization of CO2 from the sediment. Oecologia 88: 258–262.Google Scholar
  27. Pedersen, O. & Sand-Jensen, K. 1992. Adaptations of submerged Lobelia dortmanna L. to aerial life form: Morphology, carbon sources and oxygen dynamics. Oikos 65: 89–96Google Scholar
  28. Rea, N. & Ganf, G. G. 1994. Water depth changes and biomass allocation in two contrasting macrophytes. Austr. J.Mar. Freshw. Res. 45: 1459–1468.Google Scholar
  29. Salvucci, M. E. & Bowes, G. 1982. Photosynthetic and photorespiratory response of the aerial and submerged leaves of Myriophyllum brasiliense. Aquatic Bot. 13: 147–164.Google Scholar
  30. Sand-Jensen, K. & Søndergaard, M. 1979. Distribution and quantitative development of aquatic macrophytes in relation to sediment characteristics in oligotrophic Lake Kalgaard, Denmark. Freshw. Biol. 9: 1–11.Google Scholar
  31. Sand-Jensen, K., Pedersen, M. F. & Nielsen, S. L. 1992. Photosynthetic use of inorganic carbon among primary and secondary water plants in streams. Freshw. Biol. 27: 283–293.Google Scholar
  32. Sculthorpe, C. D. 1967. The biology of aquatic vascular plants. Edward Arnold, London.Google Scholar
  33. Søndergaard, M. & Lægaard, S. 1977. Vesicular-arbuscular mycorrhizas in some aquatic vascular plants. Nature 268: 232–233.Google Scholar
  34. Søndergaard, M. & Sand-Jensen, K. 1979 Carbon uptake by leaves and roots of Littorella uniflora (L.) Aschers. Aquatic Bot. 6: 1–12.Google Scholar
  35. Wintermans, J. F. G. M. & DeMots, A. 1965. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim. Biophys Acta 109: 448–453.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Søren Laurentius Nielsen
    • 1
  • Kaj Sand-Jensen
    • 2
  1. 1.Department of Life Sciences and ChemistryRoskilde UniversityRoskilde
  2. 2.Freshwater Biological LaboratoryUniversity of CopenhagenHillerødDenmark

Personalised recommendations