Nutrient Cycling in Agroecosystems

, Volume 56, Issue 1, pp 69–78 | Cite as

Initial effects of lime and rock powder application on soil solution chemistry in a dystric cambisol – results of model experiments

  • E.E. HildebrandEmail author
  • H. Schack-Kirchner


The initial effects of practical orientated lime and rock powder treatments on soil solution chemistry of a dystric cambisol are assessed by percolation experiments with undisturbed soil cores. During percolation coarse macropores remained air filled (water suction 10–60 hPa). This method may be seen as a `pedological tissue test' where in a time-lapse-experiment effects and side effects of forest fertilizations are monitored by analyzing the macropore water flux with high spatial resolution. Lime application caused a DOC-mobilization in the Ah horizon and an additional nitrification in the Bv horizon. The DOC formation is triggered by the need to replace unstable bicarbonate anions when the pH of the macropore water decreases drastically. The lime induced DOC output from the Ah horizon is a potential energy source for heterotrophic nitrifiers in the Bv horizon and may explain the additional nitrate formation. Rock powder addition caused mainly an increased K-flux into the mineral soil and showed no significant side effects. However, benefits comparable to liming can only be obtained, if rock powder is applied in 3–4 times higher dosages.

DOC forest soil amelioration liming macropore flux nitrification rock powder soil solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Augustin S, Mindrup M & Meiwes KJ (1997) Soil Chemistry. In: Huettl & Schaaf (eds) Magnesium deficiency in forest ecosystems, pp 255–273. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  2. Bonneau M, Dambrine E, Dupouey JL & Lefè vre Y (1997) Apauvrissement rapide des sols forestiers dans le nord-est de la France. Les cahiers du DSF 1 (la santé des forê ts (France) en 1996, 63–66Google Scholar
  3. Bosch C, Pfannkuch E, Baum U & Rehfuess KE (1983) Ñber die Erkrankung der Fichte in den Hochlagen des Bayerischen Waldes. Forstwiss Cbl 102/3: 167–181Google Scholar
  4. Cronan CS & Aiken GR (1985) Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack park, New York. Geochimica e Cosmochimica Acta 49, 1697–1705Google Scholar
  5. Evers FH & Schöpfer W (1988) Darstellung der Ernährungs-und Belastungsverhältnisse der Fichte-Ergebnisse der Belastungsinventur Baden-Württemberg 1983. Allg Forst u J-Ztg 159/8: 146–154Google Scholar
  6. Falkengren-Grerup U & Tyler G (1992) Changes since 1950 of mineral pools in the upper C-horizon of Swedish deciduous forest soils. Water Air and Soil Poll 64: 495–501Google Scholar
  7. Flaig H & Mohr H (1996) Der überlastete Stickstoffkreislauf, Strategien einer Korrektur. Nova Acta Leopoldina 70, Vol 289, Halle, Germany, 168 ppGoogle Scholar
  8. v. Fragstein P, Pertl W & Vogtmann H (1988) Verwitterungsverhalten silikatischer Gesteinsmehle unter Laborbedingungen. Z Pflanzenernähr Bodenk 151: 141–146Google Scholar
  9. Hildebrand EE (1994) The heterogeneous distribution of mobile ions in the rhizosphere of acid forest soils: facts, causes and consequences. J Environ Sci Health A29(9): 1973–1992Google Scholar
  10. Hildebrand EE (1991a) The spatial heterogeneity of chemical properties in acid forest soils and its importance for tree nutrition. Water Air and Soil Pollution 54: 183–191Google Scholar
  11. Hildebrand EE (1991b) Die chemische Untersuchung ungestört gelagerter Waldbodenproben-Methoden und Informationsgewinn-. KfK PEF 85 Karlsruhe, Germany, 181 ppGoogle Scholar
  12. Hildebrand EE and Schöpfer W (1993) Ergebnisse der Belastungsinventur Baden-Württemberg 1988. Mitteilgn FVA Baden-Württemberg 172 Freiburg Germany, 64 ppGoogle Scholar
  13. Hinsinger P, Bolland MDA & Gilkes RJ (1996) Silicate rock powder effect on selected chemical properties of a range of soils from western Australia and on plant growth as assessed in a glasshouse experiment. Fert Res 45 (1), 69–79Google Scholar
  14. Hüttl R (1991) Die Nährelementversorgung geschädigter Wälder in Europa und Nordamerika. Freiburger Bodenkundl Abhandlg 28 Freiburg Germany 440 ppGoogle Scholar
  15. Kahnt G Pfleiderer H & Hijazi LA (1986) Wirkungen meliorativer Gaben von Gesteinsmehlen und Gesteinssanden auf das Wachstum verschiedener landwirtschaftlicher Kulturpflanzen sowie auf physikalische Kennwerte eines Sandbodens und eines Tonbodens. Z Acker-Pflanzenbau 157: 169–180Google Scholar
  16. v. Mersi W, Kuhnert-Finkernagel R & Schinner F (1992) The influence of rock powders on microbial activity of three forest soils. Z Pflanzenernähr Bodenk 155: 29–33Google Scholar
  17. Reuss JO & Johnson DW(1986): Acid deposition and the acidification of soils and waters. Ecological Studies 59, Springer Schüler G (1995)Waldkalkung als Bodenschutz. Allg Forst Zeitschr 50: 430–433Google Scholar
  18. Watson KW & Luxmoore RJ (1986) Estimating macroporosity in a forest watershed by use of tension infiltrometer. Soil Sci Soc Amer J 50: 578–582Google Scholar
  19. v.Wilpert K, Schack-Kirchner H, Hoch R, Günther S & Hildebrand EE (1996) Bodenchemische und-physikalische Faktoren des Myzelwachstums von Mykorrhizapilzen: Bodenstruktur, Gashaushalt und Hyphenverteilung. FZKA-PEF 146, Karlsruhe (Germany) pp 1–96Google Scholar
  20. Wilson GV & Luxmoore RJ (1988) Infiltration, macroporosity and mesoporosity distributions on two forested watersheds. Soil Sci Soc Amer J 52: 329–335Google Scholar
  21. Zöttl HW (1985) Waldschäden und Nährelementversorgung. Düsseldorfer Geobot Kol. 2: 31–41Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  1. 1.Institute for Soil Science and Forest NutritionUniversity FreiburgFreiburgGermay
  2. 2.Institute for Soil Science and Forest NutritionUniversity FreiburgFreiburgGermany

Personalised recommendations