Plant Ecology

, Volume 140, Issue 2, pp 139–157 | Cite as

Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo

  • Shin-ichiro Aiba
  • Kanehiro Kitayama


We studied forest structure, composition and tree species diversity of eight plots in an environmental matrix of four altitudes (700, 1700, 2700 and 3100 m) and two types of geological substrates (ultrabasic and non-ultrabasic rocks) on Mount Kinabalu, Borneo. On both substrate series, forest stature, mean leaf area and tree species diversity (both ≥ 4.8 cm and ≥ 10 cm diameter at breast height [dbh]) decreased with altitude. The two forests on the different substrate series were similar at 700 m in structure, generic and familial composition and tree species diversity, but became dissimilar with increasing altitude. The decline in stature with altitude was steeper on the ultrabasic substrates than on the non-ultrabasic substrates, and tree species diversity was generally lower on ultrabasic substrates than on non-ultrabasic substrates at ≥ 1700 m. The forests on non-ultrabasic substrates at higher altitudes and those on ultrabasic substrates at the lower altitudes were similar in dbh versus tree height allometry, mean leaf area, and generic and familial composition at ≥ 1700 m. These contrasting patterns in forest structure and composition between the two substrate series suggested that altitudinal change was compressed on the ultrabasic substrates compared to the non-ultrabasic substrates. Tree species diversity was correlated with maximum tree height and estimated aboveground biomass, but was not with basal area, among the eight study sites. We suggest that forests with higher tree species diversity are characterized by greater biomass allocation to height growth relative to trunk diameter growth under more productive environment than forests with lower tree species diversity.

Environmental matrix Forest structure Tree species diversity Tropical rain forest Ultrabasic vegetation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiba, S. & Kohyama, T. 1997. Crown architecture and life-history traits of 14 tree species in a warm-temperate rain forest: signifi-cance of spatial heterogeneity. J. Ecol. 85: 611-624.Google Scholar
  2. Aplet, G. & Vitousek, P. M. 1994. An age-altitude matrix analysis of Hawaiian rain-forest succession. J. Ecol. 82: 137-147.Google Scholar
  3. Ash, J. 1987. Stunted cloud-forest in Taveuni, Fiji. Pac. Sci. 41: 191-199.Google Scholar
  4. Ashton, P. S. 1982. Dipterocarpaceae. FloraMalesiana Ser. I 9: 237-552.Google Scholar
  5. Austin, M. P., Ashton, P. S. & Greig-Smith, P. 1972. The application of quantitative methods to vegetation survey. III. A re-examination of rain forest data from Brunei. J. Ecol. 60: 308-324.Google Scholar
  6. Beaman, J. H. & Beaman, R. S. 1990. Diversity and distribution patterns in the flora of Mount Kinabalu. Pp. 147-160. In: Baas, P., Kalkman, K. & Geesink, R. (eds), The plant diversity of Malesia. Kluwer Academic Publishers, Dordrecht.Google Scholar
  7. Bruijnzeel, L. A., Waterloo, M. J., Proctor, J., Kuiters, A. T. & Kotterink, B. 1993. Hydrological observations in montane rain forests on Gunung Silam, Sabah, Malaysia, with special reference to the 'Massenerhebung' effect. J. Ecol. 81: 145-167.Google Scholar
  8. Buckley, R. C., Corlett, R. T. & Grubb, P. J. 1980. Are the xeromorphic trees of tropical upper montane rain forests droughtresistant? Biotropica 12: 124-136.Google Scholar
  9. Cavelier, J. 1996. Environmental factors and ecophysiological processes along altitudinal gradients in wet tropical mountains. Pp. 399-439. In: Mulkey, S. S., Chazdon, R. L. & Smith, A. P. (eds), Tropical forest plant ecophysiology. Chapman & Hall, New York.Google Scholar
  10. Collenette, P. 1964. A short account of the geology and geological history of Mt Kinabalu. Pro. Roy. Soc. B 161: 56-63.Google Scholar
  11. Coomes, D. A. & Grubb, P. J. 1996. Amazonian caatinga and related communities at La Esmeralda, Venezuela: forest structure, physiognomy and floristics, and control by soil factors. Vegetatio 122: 167-191.Google Scholar
  12. Duivenvoorden, J. F. 1996. Patterns of tree species richness in rain forests of the middle Caquetá area, Colombia, NW Amazonia. Biotropica 28: 142-158.Google Scholar
  13. Edwards, P. J. & Grubb, P. J. 1977. Studies of mineral cycling in a montane rain forest in New Guinea. I. The distribution of organic matter in the vegetation and soil. J. Ecol. 65: 943-969.Google Scholar
  14. Fox, J. E. D. 1973. A handbook to Kabili-Sepilok Forest Reserve. Sabah forest record no. 9. Borneo Literature Bureau, Kuchin.Google Scholar
  15. Gentry, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographic gradients. Ann. Mo. Bot. Gard. 75: 1-34.Google Scholar
  16. Grubb, P. J. 1971. Interpretation of the 'Massenerhebung effect' on tropical mountains. Nature 229: 44-45.Google Scholar
  17. Grubb, P. J. 1977. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Ann. Rev. Ecol. Syst. 8: 83-107.Google Scholar
  18. Jacobson, G. 1978. Geology. Pp. 101-110. In: Kinabalu, summit of Borneo. The Sabah Society, Kota Kinabalu.Google Scholar
  19. Kira, T. & Shidei, T. 1967. Primary production and turnover of organic matter in different forest ecosystems of theWestern Pacific. Jap. J. Ecol. 17: 70-87.Google Scholar
  20. Kitayama, K. 1991. Vegetation of Mount Kinabalu Park, Sabah, Malaysia. Project paper. East-West Center, Honolulu.Google Scholar
  21. Kitayama, K. 1992. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102: 149-171.Google Scholar
  22. Kitayama, K. 1995a. Biophysical conditions of the montane cloud forests of Mount Kinabalu, Sabah, Malaysia. Pp. 183-197. In: Hamilton, L. S., Juvik, J. O. & Scatena, F. N. (eds), Tropical montane cloud forests. Springer-Verlag, New York.Google Scholar
  23. Kitayama, K. 1996a. Climate of the summit region of Mount Kinabalu (Borneo) in 1992, an El Niño year. Mountain Res. Devel. 16: 65-75.Google Scholar
  24. Kitayama, K. 1996b. Patterns of species diversity on an oceanic versus a continental island mountain: a hypothesis on species diversification. J. Veg. Sci. 7: 879-888.Google Scholar
  25. Kitayama, K., Aiba, S., Majalap-Lee, N. & Ohsawa, M. 1998. Soil nitrogen meneralization rates of rain forests in a matrix of elevations and geological substrates on Mount Kinabalu, Borneo. Ecol. Res. 13, in press.Google Scholar
  26. Lieberman, D., Lieberman, M., Peralta, R. & Hartshorn, G. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J. Ecol. 84: 137-152.Google Scholar
  27. Marrs, R. H., Proctor, J., Heaney, A. & Mountfield, M. D. 1988. Changes in soils, nitrogen mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J. Ecol. 76: 466-482.Google Scholar
  28. Meijer, W. 1965. A botanical guide to the flora of Mt. Kinabalu. Pp. 325-366. In: Symposium on ecological research in humid tropics vegetation. Government of Sarawak and UNESCO, Kuchin.Google Scholar
  29. Nadkarni, N. M., Matelson, T. J. & Haber, W. A. 1995. Structural characteristics and floristic composition of a Neotropical cloud forest, Monteverde, Costa Rica. J. Trop. Ecol. 11: 481-495.Google Scholar
  30. Nagano, M. 1978. Dynamics of stand development. Pp. 21-32. In: Kira, T., Ono, Y. & Hosokawa, T. (eds), Biological production in a warm-temperate evergreen oak forest of Japan. JIBP synthesis vol. 18. University of Tokyo Press, Tokyo.Google Scholar
  31. Nakashizuka, T., Yusop, Z. & Nik, A. R. 1991. Altitudinal zonation of forest communities in Selangor, Peninsular Malaysia. J. Trop. For. Sci. 4: 233-244.Google Scholar
  32. Newbery, D. McC., Campbell, E. J. F., Proctor, J. & Still, M. J. 1996. Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia. Species composition and patterns in understorey. Vegetatio 122: 193-220.Google Scholar
  33. Nicholson, D. I. 1965. A study of virgin forest near Sandakan, North Borneo. Pp. 67-87. In: Symposium on ecological research in humid tropics vegetation. Government of Sarawak and UNESCO, Kuchin.Google Scholar
  34. Ogawa, H. 1969. An attempt at classifying forest types based on the relationship between tree height and dbh. Pp. 3-17. In: Kira, T. (ed.), Comparative study of primary productivity in forest ecosystems. JIBP-PT-F progress reports for 1968 (in Japanese).Google Scholar
  35. Ohsawa, M. 1993. Latitudinal pattern of mountain vegetation zonation in southern and eastern Asia. J. Veg. Sci. 4: 13-18.Google Scholar
  36. Ohsawa, M., Nainggolan, P. H. J., Tanaka, N. & Anwar, C. 1985. Altitudinal zonation of forest vegetation onMount Kerinci, Sumatra: with comparison to zonation in the temperate region of east Asia. J. Trop. Ecol. 1: 193-216.Google Scholar
  37. Oksanen, J. & Minchin, P. R. 1997. Instability of ordination results under changes in input data order: explanations and remedies. J. Veg. Sci. 8: 447-454.Google Scholar
  38. Pendry, C. A. & Proctor, J. 1996. The causes of altitudinal zonation of rain forests on Bukit Belalong, Brunei. J. Ecol. 84: 407-418.Google Scholar
  39. Pielou, E. C. 1975. Ecological diversity. Wiley-Interscience, New York.Google Scholar
  40. Proctor, J., Anderson, J. M., Chai, P. & Vallack, H. W. 1983. Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. I. Forest environment, structure and floristics. J. Ecol. 71: 237-260.Google Scholar
  41. Proctor, J., Lee, Y. F., Langley, A. M., Munro, W. R. C. & Nelson, T. 1988. Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. I. Environment, forest structure and floristics. J. Ecol. 76: 320-340.Google Scholar
  42. Proctor, J. &Woodell, S. R. J. 1975. The ecology of serpentine soils. Adv. Ecol. Res. 9: 255-366.Google Scholar
  43. Raich, J.W., Russell, A. E.&Vitousek, P.M. 1997. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawaii. Ecology 78: 707-721.Google Scholar
  44. Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223-225.Google Scholar
  45. Roberts, B. A. & Proctor, J. 1992. The ecology of areas with serpentinized rocks: a world view. Kluwer Academic Publishers, Dordrecht.Google Scholar
  46. Tanner, E. V. J. 1977. Four montane rain forests of Jamaica: a quantitative characterization of the floristics, the soils and the foliar mineral levels, and a discussion of the interrelations. J. Ecol. 65: 883-918.Google Scholar
  47. Tanner, E. V. J. 1980. Studies on the biomass and productivity in a series of montane rain forests in Jamaica. J. Ecol. 68: 573-588.Google Scholar
  48. ter Braak, C. J. F. 1988. CANOCO-a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correlation analysis, principal components analysis and redundancy analysis (version 2.1). TNO Institute of Applied Computer Science, Wageningen.Google Scholar
  49. Tracey, J. G. 1982. The vegetation of the humid tropical region of North Queensland. CSIRO, Melbourne.Google Scholar
  50. Weaver, P. L. & Murphy, P. G. 1990. Forest structure and productivity in Puerto Rico's Luiquillo mountains. Biotropica 22: 69-82.Google Scholar
  51. Webb, L. J. 1959. A physiognomic classification of Australian rain forests. J. Ecol. 47: 551-570.Google Scholar
  52. Whitmore, T. C. 1984. Tropical rain forests of the Far East. 2nd ed. Clarendon Press, Oxford.Google Scholar
  53. Wilson, J. B., Lee, W. G. & Mark, A. F. 1990. Species diversity in relation to ultramafic substrate and to altitude in southwestern New Zealand. Vegetatio 86: 15-20.Google Scholar
  54. Yamada, I. 1977. Forest ecological studies of the montane forest of Mt. Pangrango, West Java. IV. Floristic composition along the altitude. South East Asian Studies 15: 226-254.Google Scholar
  55. Yamakura, T., Hagihara, A., Sukardjo, S. & Ogawa, H. 1986. Aboveground biomass of tropical rain forest stands in Indonesian Borneo. Vegetatio 68: 71-82.Google Scholar
  56. Yamanaka, T. 1959. A phytosociological study of serpentine areas in Shikoku, Japan. Res. Rep. Kochi Univ. 8: 1-47.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Shin-ichiro Aiba
    • 1
  • Kanehiro Kitayama
    • 2
  1. 1.Graduate School of Environmental Earth ScienceHokkaido UniversitySapporoJapan
  2. 2.Japanese Forestry and Forest Products Research InstituteTsukuba Norin Kenkyu Danchi, IbarakiJapan

Personalised recommendations