Plant Ecology

, Volume 139, Issue 1, pp 91–101 | Cite as

Methods for quantifying fire severity in shrubland-fires

  • Beatriz Pérez
  • José M. Moreno


Methods are presented to relate temperature-residence-time at the soil surface, i.e., time above 150 ºC as an estimation of the severity of a fire, with measurements made during an experimental fire or on two post hoc measurements. The experiment was carried out in a shrubland dominated by the woody-legume Cytisus striatus subsp. eriocarpus, in Central Spain. Temperature-sensitive paints, and steam-releasing open-calorimeters were used as fire-meters during the burn. Post hoc measurements used were estimations of heat output per unit area, and measurements of the minimum diameter of branches of Cytisus remaining after the fire. Time above 150 ºC was obtained from measurements made with thermocouples placed at the soil surface in 20 contiguous 1×1 m squares of the burn plot. All other measurements were made at each 1×1 m in the 22×3 m rectangle surrounding, and including, the thermocouple squares. Various simple and multiple regression models were constructed to predict time above 150 ºC from each of the four measurements made during or after the fire. Maximum coefficients of determination obtained for regressions were 0.61 and 0.62 for water mass loss from open-calorimeters and branch diameter, respectively. Using all the variables in a multiple regression model, time above 150 ºC was related to water mass loss from open-calorimeters and heat output per unit area with a coefficient of determination of 0.77. It is concluded that estimations of time above 150 ºC at the soil surface during the passage of fire may be possible based on simple devices, such as open-calorimeters, or on biological indicators, such as minimum branch diameters. Additionally, combining two methods (open-calorimeters, estimations of heat output per unit area) may allow the reconstruction of the time above 150 ºC during the fire at a scale of 1 2, an important characteristic of a burn to understand ecosystem response to fire.

Cytisus sp. Fire behavior Fire intensity Fire severity Heat output per unit area Mediterranean-type shrublands Minimum branch diameter Open-calorimeters Pyrometers Spain Temperature-residence-time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamson, W. G. 1984. Species responses to fire on the Florida Lake Wales ridge. Am. J. Bot. 71(1): 35-43.Google Scholar
  2. Anderson, H. E. 1969. Heat transfer and fire spread. USDA Forest Service Research Paper INT-69, Intermountain Forest and Range Experiments Station, Oegden, Utah, 20 pp.Google Scholar
  3. Aston, A. R. & Gill, A. M. 1976. Coupled soil moisture, heat and water vapor transfers under simulated fire condition. Aust. J. Soil Res. 14: 55-66.Google Scholar
  4. Auld, T. D. & O’Connell, M. A. 1991. Predicting patterns of post-fire germination in 35 eastern Australian Fabaceae. Aust. J. Ecol. 16: 53-70.Google Scholar
  5. Beaufait, W. R. 1966. An integrating device of evaluating prescribed fires. Forest Sci. 12: 27-29.Google Scholar
  6. Beaufait, W. R., Hardy, C. E. & Fisher, W. C. 1975. Broadcast burning in larch-fir clear-cut: The Miller Creek-Newman Ridge study. USDA Forest Service Research Paper INT-175, Intermountain Forest and Range Experiment Station, Oegden, Utah, 53 pp.Google Scholar
  7. Bond, W. J. & Midgley, J. J. 1995. Kill thy neighbour: an individualistic argument for the evolution of flammability. Oikos 73: 79-85.Google Scholar
  8. Bradstock, R. A. & Auld, T. D. 1995. Soil temperatures during experimental bushfires in relation to fire intensity: consequences for legume germination and fire management in south-eastern Australia. J. Appl. Ecol. 32: 76-84.Google Scholar
  9. Byram, G. M. 1959. Combustion of Forest Fuel. Pp. 61-89. In: Davis, K.P. (ed.), Forest fire: Control and use. Mcgraw Hill, New York.Google Scholar
  10. Dimitrakopoulous, A. P. & Martin, R. E. 1990. Measuring and modeling soil-temperature profiles during simulated wildland fire conditions. Pp. B21.1-21.17. Proceeding of International Conference of Forest Fire Research, Coimbra, Portugal.Google Scholar
  11. Gill, A. M. & Moore, P. H. R. 1998. Big versussmall fires: The bushfire of Greater Sydney, January 1994. In: Moreno, J. M. (ed.), Large Forest Fires. Backhuys publishers, Leiden, the Netherlands.Google Scholar
  12. Greuter, W., Burdet, H. M. & Long, G. 1984-1989. Med-Checklist. Cons. Jard. Bot. Genéve.Google Scholar
  13. Hartford, R. A. & Frandsen, W. H. 1992. When it’s hot, it’s hot... or maybe it’s not!. (Surface flaming may not portend extensive soil heating). Int. J. Wildland Fire 2(3): 139-144.Google Scholar
  14. Hernando, C. 1987. Informe experiencia sobre los combustibles forestales del incendio ocurrido en la provincia de Avila el 21-7-86, en el ‘Valle del Tiétar’. Memoria sobre el incendio del ‘Valle del Tiétar’, Apéndice III.Google Scholar
  15. Hobbs, R. J. & Atkins, L. 1988. Spatial variability of experimental fire in south-west Western Australia. Aust. J. Ecol. 13: 295-299.Google Scholar
  16. Hobbs, R. J. & Gimingham, C. H. 1984. Studies on fire in Scottish heathland communities. I. Fire characteristics. J. Ecol. 72: 223- 240.Google Scholar
  17. Hobbs, R. J., Currall, J. E. P. & Gimingham, C. H. 1984. The use of ‘thermocolor’ pyrometers in the study of heath fire behaviour. J. Ecol.72: 241-250.Google Scholar
  18. Keeley, J. E. 1998. Postfire ecosystem recovery and management: The October 1993 large fire episode in California. In: Moreno, J. M. (ed.), Large Forest Fires. Backhuys publishers, Leiden, the Netherlands.Google Scholar
  19. Knight, I. K. 1981. A simple calorimeter for measuring the intensity of rural fires. Austr. Forest Res. 11: 173–177.Google Scholar
  20. Marion, G. M., Moreno, J. M. & Oechel, W. C. 1991. Fire severity, ash deposition, and clipping effects on soil nutrients in chaparral. Soil Sci. Soc. Am. J. 55: 235-240.Google Scholar
  21. Martin, R. E., Cushwa, C. T. & Miller, R. L. 1969. Fire as a physical factor in wildland management. Pp 271-288. Proceedings of the 9th Annual Timbers Fire Ecology Conference.Google Scholar
  22. Moore, P. H. R., Gill, A. M. & Kohnert, R. 1995. Quantifying bushfires for ecology using two electronic devices and biological indicators. CALMSci. Suppl. 4: 83-88.Google Scholar
  23. Moreno J. M. & Oechel, W. C. 1989. A simple method for estimating fire intensity after a burn in California chaparral. Acta Oecol.-Oecol. Plantarum 10: 57-68.Google Scholar
  24. Moreno, J. M. & Oechel, W. C. 1991a. Fire intensity effects on germination of shrubs and herbs in southern California chaparral. Ecology 72: 1993-2004.Google Scholar
  25. Moreno, J. M. & Oechel, W. C. 1991b. Fire intensity and herbivory effects on postfire resprouting of Adenostoma fasciculatumin southern California chaparral. Oecologia 85: 429-433.Google Scholar
  26. Moreno, J. M. & Oechel, W. C. 1992. Factors controlling post-fire seedling establishment in southern California chaparral. Oecologia 90: 50-60.Google Scholar
  27. Noble, I. R. 1984. Mortality of lignotuberous seedlings of Eucalyptusspecies after an intense fire in montane forest. Austr. J. Ecol. 9: 47-50.Google Scholar
  28. Oliveira, L. A., Viegas, D. X. & Raimundo, A. M. 1997. Numerical predictions on the soil thermal effect under surface fire conditions. Int. J. Wildland Fire 7(1): 51-63.Google Scholar
  29. Raison, R. J., Woods, P. V., Jakobsen, B. F. & Bary, G. A. V. 1986. Soil temperatures during and following a low-intensity prescribed burning in a Eucalyptus paucifloraforest. Australian J. Soil Res. 24: 33-47.Google Scholar
  30. Rice, S. K. 1993. Vegetation establishment in post-fire Adenostomachaparral in relation to fine-scale pattern in fire intensity and soil nutrients. J. Veg. Sci. 4: 115-124.Google Scholar
  31. Riggan, P. J., Franklin, S. E., Brass, J. A. & Brooks, F. E. 1994. Perspectives on firemanagement inMediterranean ecosystems of Southern California. Pp. 140-162. In: Moreno, J. M. & Oechel, W. C. (eds), The role of fire in Mediterranean-type ecosystems. Ecological Studies, Vol 107, Springer-Verlag, New York.Google Scholar
  32. Tolhurst, K. G. 1995. Fire from a flora, fauna and soil perspectives: sensible heat measurement. CALMSci. Suppl. 4: 45-58.Google Scholar
  33. Turner, M. G., Hargrove, W. W., Gardner, R. H. & Romme, W. H. 1994. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J. Veg. Sci. 5: 731-742.Google Scholar
  34. Tutin, T. G., Heywood, U. H., Burges, N. A., Moore, D. M., Walters, S. M. & Webb, D. A. 1964-1980. Flora Europaea. Cambridge University Press, Cambridge.Google Scholar
  35. Viegas, D. X., Figueiredo, A. R., Costa, S. & Borges, C. M. 1994. On the use of water containers for the evaluation of the heat release of a spreading fire. Pp. 817-832. Proceedings of the II International Conference on Forest Fire Research, Coimbra, Portugal.Google Scholar
  36. Weber, R. O., Gill, A. M., Lyons, P. R. A., Moore, P. H. R., Bradstock, R. A. & Mercer, G. N. 1995. Modeling wildland fire temperatures. CALMSci. Suppl. 4: 23-26.Google Scholar
  37. Whittaker, E. 1961. Temperatures in heath fires. J. Ecol. 49: 709- 715.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Beatriz Pérez
    • 1
  • José M. Moreno
    • 2
  1. 1.Sección de Ecología del FuegoInstituto Universitario de Ciencias Ambientales, Universidad ComplutenseMadridSpain
  2. 2.Facultad de Ciencias del Medio AmbienteUniversidad de Castilla-La Mancha, Vicerrectorado del Campus de ToledoToledoSpain

Personalised recommendations