Molecular Breeding

, Volume 4, Issue 3, pp 215–226 | Cite as

Analyses of quantitative trait loci associated with resistance to shape Sclerotinia sclerotiorum in sunflowers (shape Helianthus annuus L.) using molecular markers

  • Emmanuelle Mestries
  • Laurent Gentzbittel
  • Denis Tourvieille de Labrouhe
  • Paul Nicolas
  • Felicity Vear
Article

Abstract

Restriction fragment length polymorphism and isoenzyme markers were used to investigate quantitative trait loci involved in sunflower resistance to mycelial extension of Sclerotinia sclerotiorum on leaves and capitula. Seed weight, oil content and flowering data were also evaluated. Four quantitative trait loci were demonstrated for leaf resistance and two for capitulum resistance. One of these zones appears involved in resistance to both types of S. sclerotiorum attack while the others appear specific for resistance of one part of the plant. Two quantitative trait loci were detected for seed weight, three for oil content and three for flowering date. Individual quantitative trait loci explained 9% to 48% of the phenotypic variability, confirming the polygenic basis of the quantitative traits studied. Overall, the quantitative trait loci explain 60% of the genetic variation for leaf resistance and 38% for capitulum resistance to S. sclerotiorum. One linkage group is particularly interesting since it includes quantitative trait loci for all the five quantitative traits measured. Hypotheses for linkage versus pleiotropy and consequences of all the results in resistance breeding are discussed.

Helianthus annuus QTL resistance RFLP Sclerotinia scerotorum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abler BSB, Edwards MD, Stuber CW: Isoenzymatic identification of quantitative trait loci in crosses of elite maize inbreds. Crop Sci 31: 267–274 (1991).Google Scholar
  2. Castaño F, Hemery-Tardin MC, Tourvieille de Labrouhe D, Vear F: The inheritance and biochemistry of resistance to Sclerotinia sclerotiorum leaf infections in sunflower (Helianthus annuus L.). Euphytica 58: 209–219 (1992).Google Scholar
  3. Castaño F, Vear F, Tourvieille de Labrouhe D: Resistance of sunflower inbred lines to various forms of attack by Sclerotinia sclerotiorum and relations with some morphological characters. Euphytica 68: 85–98 (1993).Google Scholar
  4. Chervet B, Vear F: Etude des relations entre la précocité du tournesol et son rendement, sa teneur en huile, son développement et sa morphologie. Agronomie 10: 51–56 (1990).Google Scholar
  5. Darvasi A, Soller M: Optimum spacing of genetic markers for determining linkage between marker loci and quantitative trait loci. Theor Appl Genet 89: 351–357 (1994).Google Scholar
  6. Dirlewanger E, Isaac PG, Ranade S, Belajouza M, Cousin R, De Vienne D: Restriction fragment length polymorphism analysis of loci associated with disease resistances genes and developmental traits in Pisum sativum L. Theor Appl Genet 88: 17–27 (1994).Google Scholar
  7. Edwards MD, Stuber CW, Wendel JF: Molecular-marker-facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and type of gene action. Genetics 116: 113–125 (1987).Google Scholar
  8. Falconer D: Introduction to quantitative genetics. Oliver and Boyd, Edinburgh and London, 2nd edition (1981).Google Scholar
  9. Freymark PJ, Lee M, Martinson CA, Woodman WL: Molecularmarker-facilitated investigation of host-plant response to Exserohilum turcicum in maize (Zea mays L.): components of resistance. Theor Appl Genet 88: 305–313 (1994).Google Scholar
  10. Gentzbittel L, Vear F, Zhang YX, Bervillé A, Nicolas P: Development of a consensus linkage RFLP map of cultivated sunflower (Helianthus annuus L.). Theor Appl Genet 90: 1079–1086 (1995).Google Scholar
  11. Grattapaglia D, Bertolucci FL, Sederoff RR: Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. wrophylla using a pseudo-testcross strategy and RAPD markers. Theor Appl Genet 90: 933–947 (1995).Google Scholar
  12. Han F, Ulrich SE, Chirat S, Menteur S, Jestin L, Sarrafi A, Hayes PM, Jones BL, Blake TK, Wesenberg DM, Kleinhofs A, Kilian A: Mapping of β-glucan content and β-glucanase activity loci in barley grain and malt. Theor Appl Genet 91: 921–927 (1995).Google Scholar
  13. Jones ES, Liu CJ, Gale MD, Hash CT, Witcombe JR: Mapping quantitative trait loci for downy mildew resistance in pearl millet. Theor Appl Genet 91: 448–456 (1995).Google Scholar
  14. Kosambi DD: The estimation of ramp distances from recombination values. Ann Eugen 12: 172–175 (1944).Google Scholar
  15. Lande R, Thompson R: Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743–756 (1990).Google Scholar
  16. Lander ES, Botstein D: Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetic 121: 185–199 (1989).Google Scholar
  17. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L: Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181 (1987).Google Scholar
  18. Landry BS, Hubert N, Crete R, Chang MS, Lincoln SE, Etoh T: A genetic map for Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin). Genome 35: 409–420 (1992).Google Scholar
  19. Leclercq P: La stérilité mâle cytoplasmique du tournesol. I. Premières études sur la restauration de fertilité. Ann Amél Plantes 21: 45–54 (1971).Google Scholar
  20. Lefebvre V: Marquage moléculaire et analyse de résistances polygéniques: interaction piment (Capsicum annuum)-Phytophthora capsici Leon. Thèse de Doctorat, PARIS XI-Orsay, France (1993).Google Scholar
  21. Li Z, Pinson SRM, Stansel JW, Park WD: Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Apply Genet 91: 374–381 (1995).Google Scholar
  22. Lincoln E, Daly MJ, Lander ES: Mapping genes controlling quantitative traits using Mapmaker/QTL version 1.1: a tutorial and reference manual. Whitehead Institute Technical Report, Cambridge, 2nd edition (1992).Google Scholar
  23. McCouch SR, Doerge RW: QTL mapping in rice. TIG 11: 482–487 (1995).Google Scholar
  24. Mather K, Jinks JL: Biometrical genetics. Chapman and Hall, London (1971).Google Scholar
  25. Nielsen G, Johansen HB: Proposal for the identification of barley based on the genotypes for 2 hordein and 39 isozyme loci of 47 reference varieties. Euphytica 35: 717–728 (1986).Google Scholar
  26. Pereira MG, Lee M: Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90: 380–388 (1995).Google Scholar
  27. Putt ED: Recessive branching in sunflowers. Crop Sci 4: 444–445 (1964).Google Scholar
  28. Quillet MC, Vear F, Branlard G: The use of isozyme polymorphism for identification of sunflower (Helianthus annuus) inbred lines. J Genet Breed 46: 295–304 (1992).Google Scholar
  29. Tourvieille D, Vear F: Comparaison de méthodes d'estimation de la résistance du tournesol à Sclerotinia sclerotiorum (Lib.) De Bary. Agronomie 4: 517–525 (1984).Google Scholar
  30. Vear F, Guillaumin JJ: Etude de méthodes d'inoculation du tournesol par Sclerotinia sclerotiorum et application à la sélection. Ann Amélior Plant 27: 523–537 (1977).Google Scholar
  31. Vear F, Tourvieille D: Relations between oil content and resistance to Sclerotinia sclerotiorum in sunflowers. In: Proceedings 12th International Sunflower Conference, Novi-Sad, July 25–29, 355–360 (1988).Google Scholar
  32. Veldboom LR, Lee M: Molecular-marker-facilitated studies of morphological traits in maize: II. Determination of QTLs for grain yield and yield components. Their Appl Genet 89: 451–458 (1994).Google Scholar
  33. Veldboom LR, Lee M, Woodman WL: Molecular-marker-facilitated studies in an elite maize population: I. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet 88: 7–16 (1994).Google Scholar
  34. Wendel J, Weeden N: Visualization and interpretation of plant isozymes. In: Soltis D, Soltis P (eds) Isozymes in plant biology, pp. 5–45. Dioscorides Press, Portland (1989).Google Scholar
  35. Zwickert-Menteur S: Polymorphisme en iso-électrofocalisation et études génétiques des activités d'enzymes-clés du maltage chez l'orge (Hordeum vulgare L.). Thèse de Doctorat, PARIS VI, France 149 pp. (1996).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Emmanuelle Mestries
    • 1
    • 2
  • Laurent Gentzbittel
    • 1
  • Denis Tourvieille de Labrouhe
    • 1
  • Paul Nicolas
    • 1
  • Felicity Vear
    • 1
  1. 1.Laboratoire de Biotechnologie et Amélioration des Plantes, Ecole Nationale Supérieure Agronomique de ToulouseToulouse cedexFrance
  2. 2.Unité associéeUniversité Blaise Pascal Clermont-Ferrand II-I.N.R.A., Organisation et Variabilité des Génomes VégétauxAubière CedexFrance

Personalised recommendations