Journal of Porous Materials

, Volume 7, Issue 1–3, pp 63–66 | Cite as

Oxidation of Porous Silicon in Dry and Wet Environments under Mild Temperature Conditions

  • Y.H. Ogata
  • T. Tsuboi
  • T. Sakka
  • S. Naito
Article

Abstract

Oxidation behavior of porous silicon under various environments of dry and wet air, and solution with and without appropriate oxidant at mild temperatures has been investigated. The progress of oxidation was followed by infrared spectroscopy. The presence of water vapor greatly accelerates the oxidation rate in comparison with the rate in dry air. The oxidized states are clarified with the help of oxidation experiments of partially hydrogen-desorbed porous silicon, which does not contain SiH2 and SiH3 as the hydride species. An oxidation mechanism is proposed to explain that oxidation is accelerated in the presence of water vapor and at the partially hydrogen-desorbed porous silicon. Further, oxidation behavior of porous silicon in solution containing appropriate oxidant is also investigated. The rate is very rapid and the oxidation does not produce the back-bond oxidized state of OySiHx in contrast to the oxidation in air.

porous silicon oxidation IR spectroscopy vibrational analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Yablonovitch, D.L. Allara et al., Phys. Rev. Lett. 57, 249 (1986).Google Scholar
  2. 2.
    R. Herino, G. Bomchil, K. Barla, C. Bertrand, and J.L. Ginoux, J. Electrochem. Soc. 134, 1994 (1987).Google Scholar
  3. 3.
    R.J. Collins and H.Y. Fan, Phys. Rev. 93, 674 (1954).Google Scholar
  4. 4.
    Y. Kato, T. Ito, and A. Hiraki, Jpn. J. Appl. Phys. 27, L1406 (1988).Google Scholar
  5. 5.
    P. Gupta, V.L. Colvin, and S.M. George, Phys. Rev. B37, 8234 (1988).Google Scholar
  6. 6.
    P. Gupta, A.C. Dillon, A.S. Bracker, and S.M. George, Surf. Sci. 245, 360 (1991).Google Scholar
  7. 7.
    G. Lucovsky, Solid State Commun. 29, 571 (1979).Google Scholar
  8. 8.
    A. Borghesi, G. Guizzetti, A. Sassella, O. Bisi, and L. Pavesi, Solid State Commun. 89, 615 (1994).Google Scholar
  9. 9.
    Y. Ogata, H. Niki, T. Sakka, and M. Iwasaki, J. Electrochem. Soc. 142, 195 (1995).Google Scholar
  10. 10.
    Y. Ogata, H. Niki, T. Sakka, and M. Iwasaki, J. Electrochem. Soc. 142, 1595 (1995).Google Scholar
  11. 11.
    T. Tsuboi, T. Sakka, and Y.H. Ogata, J. Appl. Phys. 83, 4501 (1998).Google Scholar
  12. 12.
    Y.H. Ogata, F. Kato, T. Tsuboi, and T. Sakka, J. Electrochem. Soc. 145, 2439 (1998).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Y.H. Ogata
    • 1
  • T. Tsuboi
    • 1
  • T. Sakka
    • 1
  • S. Naito
    • 1
  1. 1.Institute of Advanced EnergyKyoto University, UjiKyotoJapan

Personalised recommendations