Environmental and Ecological Statistics

, Volume 5, Issue 1, pp 1–27 | Cite as

Partialling out the spatial component of ecological variation: questions and propositions in the linear modelling framework

  • Alain Meot
  • Pierre Legendre
  • Daniel Borcard


First, we formulate some questions posed by the procedure recently proposed by Borcard et al. (1992) and Borcard and Legendre (1994) to partition the ecological variation of a community into different portions related to spatial and environmental descriptors. Working separately on the two steps of this procedure - linear modelling and ordinations on modelled tables - allows us to propose different solutions to these questions. These solutions, which use little-known proper- ties of a linear regression model with two additive factors and no interaction, are also adapted to the case of mixed factors (qualitative and quantitative). These properties are presented in the framework of canonical correlation analysis. In particular, they allow us to propose an alternative to partial regression, which avoids confounding. A detailed illustration is presented. © Rapid Science 1998

canonical correlation analysis canonical correspondence analysis ecological models geographical polynomials linear model oribatid mites spatial patterns statistical triplet variation partitioning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afriat, S.N. (1957) Orthogonal and oblique projectors and the characteristics of pairs of vector spaces. Proceedings of the Cambridge Philosophical Society, Mathematical and Physical Sciences, 53, 800–16.Google Scholar
  2. Borcard, D., Legendre, P. and Drapeau, P. (1992) Partialling out the spatial component of ecological variation. Ecology, 73, 1045–55.Google Scholar
  3. Borcard, D. and Legendre, P. (1994) Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environmental and Ecological Statistics, 1, 37–53.Google Scholar
  4. Bourgault, G. and Marcotte, D. (1991) Multivariable variogram and its application to the linear model of coregionalization. Mathematical Geology, 23, 899–928.Google Scholar
  5. Cailliez, F. and Pagès, J.-P. (1976) Introduction à l'analyse des données. SMASH, Paris.Google Scholar
  6. Cliff, A.D., and Ord, J.K. (1981) Spatial Processes. Pion, London.Google Scholar
  7. Chessel, D., Lebreton, J.-D. and Yoccoz, N. (1987). Propriétés de l'analyse canonique des correspondances. Une illustration en hydrobiologie. Revue de Statistique Appliquée, 35, 55–72.Google Scholar
  8. Chévenet, F., Dolédec, S. and Chessel, D. (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology, 31, 295–309.Google Scholar
  9. Denslow, J.S. (1985) Disturbance-mediated coexistence of species. In The Ecology of Natural Disturbance and Patch-dynamics. S.T.A. Pickett and P.S. White (eds) Academic Press, Orlando, pp. 307–23.Google Scholar
  10. Dolédec, S., Chessel, D., ter Braak, C.J.F. and Champely, S. (1996) Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics, 3, 143–66.Google Scholar
  11. Escoufier, Y. (1982) L'analyse des correspondances des tableaux simples et multiples. Metron, 40, 53–77.Google Scholar
  12. Escoufier, Y. (1987) The duality diagram: a means for better practical applications. In Development in Numerical Ecology, P. Legendre and L. Legendre (eds), Springer-Verlag, Berlin, pp. 139–56.Google Scholar
  13. Fraile, L., Escoufier, Y. and Raibaut, A. (1993) Analyse des correspondances de données planifiées: étude de la chémotaxie de la larve infestante d'un parasite. Biometrics, 49, 1142–53.Google Scholar
  14. Graybill, F.A. (1976). Theory and Application of the Linear Model. Wadsworth Publishing Co., Belmont.Google Scholar
  15. Greenacre, M.J. (1984) Theory and Applications of Correspondence Analysis. Academic Press, London.Google Scholar
  16. Gifi, A. (1990) Nonlinear Multivariate Analysis. Wiley, Chichester.Google Scholar
  17. Gittins, R. (1985) Canonical Analysis, A Review with Applications in Ecology. Springer-Verlag, Berlin.Google Scholar
  18. Griffith, D.A. (1988) Advanced Spatial Statistics. Kluwer, Dordrecht.Google Scholar
  19. Grzebyk, M. and Wackernagel, H. (1994) Multivariate analysis and spatial/temporal scales: real and complex models. In Proceedings (Invited Papers) of the XVIIth International Biometric Conference, Hamilton, Canada, pp. 19–33.Google Scholar
  20. Hubert, L.J., Colledge, R.G. and Costanzo, C.M. (1981) Generalized procedures for evaluating spatial autocorrelation. Geographical Analysis, 13(3), 224–33.Google Scholar
  21. Isaaks, E.H. and Srivastava, R.M. (1989) An Introduction to Applied Geostatistics. Oxford University Press, New York.Google Scholar
  22. Lebreton, J.D., Sabatier, R., Banco, G. and Bacou, A.M. (1991) Principal component and correspondence analyses with respect to instrumental variables: an overview of their role in studies of structure-activity and species-environment relationships. In Applied Multivariate Analysis in SAR and Environmental Studies, J. Devillers and W. Karcher (eds) Kluwer, Dordrecht, pp. 85–114.Google Scholar
  23. Legendre, P. and Borcard, D. (1994) Rejoinder. Environmental and Ecological Statistics, 1, 57–61.Google Scholar
  24. Legendre, P. and Fortin, M.-J. (1989) Spatial pattern and ecological analysis. Vegetatio, 80, 107–38.Google Scholar
  25. Legendre, P. and Troussellier, M. (1988) Aquatic heterotrophic bacteria: Modelling in the presence of spatial autocorrelation. Limnology and Oceanography, 33, 1055–67.Google Scholar
  26. Mantel, N. (1967) The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–20.Google Scholar
  27. May, R.M. (1984) An overview: real and apparent patterns in community structure. In Ecological Communities: Conceptual Issues and the Evidence, D.R. Strong, D. Simberloff, L.G. Abele and A.B. Thistle (eds) Princeton University Press, Princeton, NJ, pp. 3–16.Google Scholar
  28. Méot, A., Chessel, D. and Sabatier, R. (1993) Opérateurs de voisinage et analyse des données spatio-temporelles. In Biométrie et Environnement, J. D. Lebreton and B. Asselain (eds) Masson, Paris, pp. 45–71.Google Scholar
  29. Pernin, M.-O. and Pagés, M. (1988) Comparaison de deux méthodes: l'analyse des correspondances complè te et l'analyse dissymétrique conditionnelle. Statistique et Analyse des Donneés, 13(3), 44–55.Google Scholar
  30. Pontier, J. and Pernin, M.-O. (1987) Solution using `LONGI'. In Data Analysis: Ins and Outs of Solving Real Problems, J. Jansen, F. Marcotorchino and J.M. Proth (eds). Plenum, New York, pp. 49–66.Google Scholar
  31. Pontier, J., Dufour, A.-B. and Normand, M. (1990) Le modèle euclidien en analyse des données. SMA, édition Ellipses, Bruxelles.Google Scholar
  32. Prodon, R. and Lebreton, J.D. (1994) Analyses multivariées des relations espè ces-milieu: structure et interprétation écologique. Vie Milieu, 44, 69–91.Google Scholar
  33. Rao, C.R. (1964) The use and interpretation of principal component analysis in applied research. Sankhyā A, 26, 329–58.Google Scholar
  34. Rao, C.R., and Yanaï, H. (1979) General definition and decomposition of projectors and some applications to statistical problems. Journal of Statistical Planning and Inference, 3, 1–15.Google Scholar
  35. Rossi R.E., Mulla, D.J., Journel, A.G. and Franz, E.H. (1992) Geostatistical tools for modelling and interpreting ecological spatial dependence. Ecological Monographs, 62(2), 277–314.Google Scholar
  36. Sabatier, R., Lebreton, J.-D. and Chessel, D. (1989) Principal component analysis with instrumental variables as a tool for modelling composition data. In Multiway Data Analysis, R. Coppi and S. Balasco (eds) Elsevier, Amsterdam. pp. 341–52.Google Scholar
  37. Shaw, R.G. and Mitchell-Olds, T. (1993) Anova for unbalanced data: an overview. Ecology, 74, 1045–55.Google Scholar
  38. Smouse, P.E., Long, J.C. and Sokal, R.R. (1986). Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology, 35, 627–32.Google Scholar
  39. Sokal, R.R. and Oden, N.L. (1978) Spatial autocorrelation in biology. 2. Some biological implications and four applications of evolutionary and ecological interset. Biological Journal of the Linnean Society, 10, 229–49.Google Scholar
  40. Takeuchi, K., Yanai, H. and Mukerjee, B.N. (1982) The Foundations of Multivariate Analysis. A Unified Approach by Means of Projection on Linear Subspaces. Wiley Eastern, New Delhi.Google Scholar
  41. ter Braak, C.J.F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–79.Google Scholar
  42. ter Braak, C.J.F. (1988) Partial canonical correspondence analysis. In: Classification and Related Methods of Data Analysis, H.H. Block (ed.) North Holland, Amsterdam, pp. 551–8.Google Scholar
  43. ter Braak, C.J.F. (1990) Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen, The Netherlands.Google Scholar
  44. ter Braak, C.J.F. and Verdonschot, P.F.M. (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences, 57(3), 255–89.Google Scholar
  45. Thioulouse, J., Chessel, D. and Champely, S. (1995a) Multivariate analysis of spatial patterns: a unified approach to local and global structures. Environmental and Ecological Statistics, 2, 1–14.Google Scholar
  46. Thioulouse, J., Dolédec, D., Chessel, D. and Olivier, J.M. (1995b) ADE software: multivariate analysis and graphical display of environmental data. In: Proceedings of the 4th International Software Exhibition for Environmental Science and Engineering, pp. 57–62.Google Scholar
  47. Upton, G. and Fingleton, B. (1985) Spatial Data Analysis by Example: Point Pattern and Quantitative Data. Vol. 1. Wiley, New York.Google Scholar
  48. Whittaker, J. (1984) Model interpretation from the additive elements of the likelihood function. Applied Statistics, 33(1), 52–64.Google Scholar
  49. Yoccoz, N. and Chessel, D. (1988) Ordination sous contraintes de relevés d'avifaune: élimination d'effets dans un plan d'observations à deux facteurs. Compte rendu hebdomadaire des séances de l'Académie des sciences, série III, 307, 189–94.Google Scholar

Copyright information

© Chapman and Hall 1998

Authors and Affiliations

  • Alain Meot
    • 1
  • Pierre Legendre
    • 2
  • Daniel Borcard
    • 1
  1. 1.UPRESA CNRS 6024, Laboratoire de Psychologie Sociale de la Cognition.Universite Clermont-FerrandClermont-FerrandFrance
  2. 2.Departement de Sciences BiologiquesUniversite de MontrealMontrealCanada

Personalised recommendations