Foundations of Science

, Volume 2, Issue 1, pp 107–121 | Cite as

"Every Man in His Notions" or Alchemists' Discussion on Artificial Intelligence

  • Mariusz Flasiński
Article

Abstract

A survey of the main approaches in a mind study -oriented part of Artificial Intelligence is made focusing on controversial issues and extreme hypotheses. Various meanings of terms: "intelligence" and "artificial intelligence" are discussed. Limitations for constructing intelligent systems resulting from the lack of formalized models of cognitive activity are shown. The approaches surveyed are then recapitulated in the light of these limitations.

Artificial Intelligence (AI) Intelligence "Intelligent" systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aquinas, St. Thomas (1948), The Summa Theologica, English transl. New York.Google Scholar
  2. Bocheński, J.M. (1954), Die zeitgenossischen Denkmethoden, Bern: A. Francke AG Verlag.Google Scholar
  3. Chomsky, N. (1965), Aspects of the Theory of Syntax, Cambridge: MIT Press.Google Scholar
  4. Dreyfus, H.L. (1988) ‘Misrepresenting human intelligence’, in: Born, B. (ed.), Artificial Intelligence. The Case Against, London: Routledge.Google Scholar
  5. Firebaugh, M.W. (1988), Artificial Intelligence. A Knowledge-Based Approach, Boston: PWS-Kent Publ. Comp.Google Scholar
  6. Kanal, L.N. (1993), ‘On pattern, categories and alternate realities’, Pattern Recognition Letters, 14, 241–255.CrossRefGoogle Scholar
  7. Lakoff, G. (1987), Women, Fire and Dangerous Things, Chicago: The University of Chicago Press.Google Scholar
  8. Langacker, R.W. (1987), Foundations of Cognitive Grammar, Stanford: Stanford University Press.Google Scholar
  9. McCarthy, J. (1979), ‘Ascribing mental qualities to machines’, in: Ringle, M. (ed.), Philosophical Perspectives of Artificial Intelligence, Brighton, 1979.Google Scholar
  10. Mc Corduck, P. (1979), Machines Who Think, San Francisco, CA: W.H. Freeman and Comp.Google Scholar
  11. Minsky, M., Papert, S. (1969), Perceptrons — An Introduction to Computational Gcomctry, Cambridge, MA: The MIT Press.Google Scholar
  12. Newell, A., Simon, H.A. (1976), ‘Computer science as empirical inquiry: symbols and search’, Communications of the Association for Computing Machinery 19 (March 1976).Google Scholar
  13. Penrose, R. (1989), The Emperor's New Mind, Oxford: Oxford University Press.Google Scholar
  14. Rosch, E. (1978), ‘Principles of categorization’, in: Rosch, E. Lloyd, B. (eds.), Cognition and Categorization, Hillsdale, NJ: Lawrence Erlbaum Associates Publ.Google Scholar
  15. Rosenblatt, F. (1962), Principles of Neurodynamics, New York, NY: Spartan Books.Google Scholar
  16. Schank, R.C., Abelson, R.P. (1977), Scripts, Plans, Goals, and Understanding, Hillsdale, NJ: Lawrence Erlbaum Associates Publ.Google Scholar
  17. Searle, J.R. (1980), ‘Minds, brains and programs’, The Behavioral and Brain Sciences 3, 417–457.CrossRefGoogle Scholar
  18. Simon, H.A. (1984), ‘Why should machines learn?’, in: Michalski, R.S., Carbonell J.G., Mitchell, T.M. (eds.), Machine Learning: Artificial Intelligence Approach, Berlin: Springer Verlag.Google Scholar
  19. Turing, A.M. (1950), ‘Computing machinery and intelligence’, Mind, 59, no 236.Google Scholar
  20. Watson, J.B. (1919), Psychology from the Standpoint of a Behaviourist.Google Scholar
  21. Winograd, T. (1987), ‘Thinking machines: Can there be? Are we?’, in: Winograd, T., Flores, C.F. (eds.), Understanding Computers and Cognition: A New Foundation for Design, Addison-Wesley.Google Scholar
  22. Winston, P.H. (1992), Artificial Intelligence, Reading, MA: Addison-Wesley.Google Scholar
  23. Wittgenstein, L. (1953), Philosophical Investigations, New York: Macmillan.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Mariusz Flasiński
    • 1
  1. 1.Section of Artificial Intelligence Systems Institute of Computer ScienceJagiellonian UniversityPoland

Personalised recommendations