Foundations of Science

, Volume 3, Issue 2, pp 313–340 | Cite as

Inconsistencies in Constituent Theories of World Views: Quantum Mechanical Examples

  • Diederik Aerts
  • Jan Broekaert
  • Sonja Smets
Article

Abstract

We put forward the hypothesis that there exist three basic attitudes towards inconsistencies within world views: (1) The inconsistency is tolerated temporarily and is viewed as an expression of a temporary lack of knowledge due to an incomplete or wrong theory. The resolution of the inconsistency is believed to be inherent to the improvement of the theory. This improvement ultimately resolves the contradiction and therefore we call this attitude the ‘regularising’ attitude; (2) The inconsistency is tolerated and both contradicting elements in the theory are retained. This attitude integrates the inconsistency and leads to a paraconsistent calculus; therefore we will call it the paraconsistent attitude. (3) In the third attitude, both elements of inconsistency are considered to be false and the ‘real situation’ is considered something different that can not be described by the theory constructively. This indicates the incompleteness of the theory, and leads us to a paracomplete calculus; therefore we call it the paracomplete attitude. We illustrate these three attitudes by means of two ‘paradoxical’ situations in quantum mechanics, the wave-particle duality and the situation of non locality.

inconsistency non-locality paraconsistent paracomplete paradox quantum mechanics wave-particle duality world views 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. D. Aerts: 1983, A Possible Explanation for the Probabilities of Quantum Mechanics and a Macroscopic Situation that Violates Bell Inequalities, in: P. Mittelstaedt et al., eds., Recent Developments in Quantum Logic, in Grundlagen der Exacten Naturwissenschaften, vol. 6. Wissenschaftverlag, Bibliographisches Institut, Mannheim, p. 235.Google Scholar
  2. D. Aerts: 1986, A Possible Explanation for the Probabilities of Quantum Mechanics. J. Math. Phys. 27: 202.CrossRefGoogle Scholar
  3. D. Aerts: 1990, An Attempt to Imagine Parts of the Reality of the Micro-world. Proceedings of the Conference: Problems in Quantum Physics; Gdansk '89. World Scientific Publishing Company, Singapore, p. 3.Google Scholar
  4. D. Aerts: 1992, The Construction of Reality and its Influence on the Understanding of Quantum Structures. Int. J. Theor. Phys. 31: 1815.CrossRefGoogle Scholar
  5. D. Aerts: 1995, Quantum Structures: An Attempt to Explain the Origin of their Appearance in Nature. Int. J. Theor. Phys. 34: 1165.CrossRefGoogle Scholar
  6. D. Aerts: 1999, The Stuff the World if Made Off: Physics and Reality, in: D. Aerts, J. Broekaert and E. Mathijs, eds., Science, Nature and Human Action, the White Book of 'Einstein Meets Magritte'. Kluwer Academic, Dordrecht, New York.Google Scholar
  7. D. Aerts, L. Apostel, B. De Moor, S. Hellemans, E. Maex, H. Van Belle and J. Van der Veken: 1994a, World Views, From Fragmentation towards Integration. VUB-PRESS, Brussels Free University.Google Scholar
  8. D. Aerts, L. Apostel, B. De Moor, S. Hellemans, E. Maex, H. Van Belle and J. Van der Veken: 1994b, Cirkelen om de Wereld, Concrete invulling van het wereldbeeldenproject. Pelckmans, Kappellen.Google Scholar
  9. D. Aerts, B. Coecke and S. Smets: 1999, On the Origin of Probabilities in Quantum Mechanics: Creative and Contextual Aspects, in: G. Cornelis, S. Smets and J.P. Van Bendegem, eds., Metadebates: the Blue Book of 'Einstein Meets Magritte'. Kluwer Academic Publishers, Dordrecht, New York.Google Scholar
  10. D. Aerts, H. Van Belle and J. Van der Veken (eds.): 1998, World Views and the Problem of Synthesis, the Yellow Book of 'Einstein Meets Magritte', Kluwer Academic, Dordrecht, New York.Google Scholar
  11. L. Apostel and J. Van der Veken: 1991, Wereldbeelden, van fragmentering naar integratie. Pelckmans, Kappellen.Google Scholar
  12. L. de Broglie: 1926, Sur la possibilité de relier les phénomè nes d'interference et de diffracton! a la théorie des quanta de lumiè re. Comptes Rendus 183: 447.Google Scholar
  13. D. Bohm and J.P. Vigier: 1954, Model of the Causal Interpretation of Quantum Theory in Terms of a Fluid with Irregular Fluctuations. Physical Review 96: 208.CrossRefGoogle Scholar
  14. C. Cohen-Tannoudji, B. Diu and F. Laloë : 1973,Mécanique Quantique.Hermann, Paris.Google Scholar
  15. R.P. Feynman: 1985, QED: The Strange Theory of Light and Matter. Princeton University Press, Princeton.Google Scholar
  16. A. Galindo and P. Pascual: 1990, Quantum Mechanics I. Springer-Verlag, Berlin.Google Scholar
  17. H. Rauch et al.: 1974, Test of a Single Crystal Neutron Interferometer. Phys. Lett. 47A: 369.Google Scholar
  18. H. Rauch et al.: 1975, Verification of Coherent Spinor Rotations of Fermions. Phys. Lett. 54A: 425.Google Scholar
  19. H. Rauch: 1988, Neutron Interferometric Tests of Quantum Mechanics. Helv. Phys. Acta 61: 589.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Diederik Aerts
    • 1
  • Jan Broekaert
    • 1
  • Sonja Smets
    • 1
  1. 1.Center Leo ApostelBrussels Free University, Krijgskundestraat 33BrusselsBelgium

Personalised recommendations