Journal of Insect Conservation

, Volume 4, Issue 3, pp 201–208 | Cite as

Importance of Conserving Alternative Pollinators: Assessing the Pollination Efficiency of the Squash Bee, Peponapis limitaris in Cucurbita moschata (Cucurbitaceae)

  • María Azucena Canto-Aguilar
  • Víctor Parra-Tabla
Article

Abstract

Although the honey bee, Apis mellifera, has been considered the best pollinator for crops needing insect pollination, the current pandemic of varroatosis among honeybees highlights the need to find additional or alternative species as managed crop pollinators. Moreover, there is evidence that A. mellifera may not always be the most efficient pollinator. Introduction of A. mellifera into crops may be unnecessary, and even detrimental to non-Apis bee populations, which should be considered as an alternative for crop production improvement. Evaluating the pollination efficiency of non-Apis bees is one of the first steps in planning successful strategies for their conservation. In this study, we evaluated the pollination efficiency of Peponapis limitaris and A. mellifera in plots of Cucurbita moschata: pollen removal and deposition; pollinator visit frequency; and the pollinator visit–nectar production relationship. The results show P. limitaris to be the most efficient pollinator as: (1) both males and females remove and deposit almost four times as much pollen as A. mellifera; (2) they make significantly more floral visits than A. mellifera; and (3) their visit frequency shows a strong relationship to C. moschata nectar production during anthesis. Recommendations arising from this study are: (1) the introduction of A. mellifera be avoided in C. moschata crops; and (2) basic research be done on the biology of P. limitaris that contribute to its conservation and greater exploitation.

Apis mellifera non-Apis bee conservation pollination efficiency Yucatán México 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen-Wardell, G., Bernhard, P., Bitner, R., Burquez, A., Buchmann, S., Cane, J., Cox, P.A., Dalton, V., Feinsinger, P., Ingram, M., Inouye, D., Jones, E., Kennedy, K., Kevan, P., Koopowitz, H., Medellin, R., Medellin-Morales, S., Nabhan, G.P., Pavblik, B., Tepedino, V., Torchio, P. and Walker, S. (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of crop yields. Conservation Biology 12, 8-17.Google Scholar
  2. Buchmann, S.L. and Nabhan, G.P. (1996) The forgotten pollinators. Washington, DC: Island Press.Google Scholar
  3. Crawley, M.J. (1993) GLIM for ecologist. Oxford UK: Blackwell Scientific Publications.Google Scholar
  4. Cruden, R.W. and Hermann, S.M. (1983) Studying nectar? In The biology of nectaries (B. Bentley and E. Thomas, eds), pp. 223-41. Columbia: Columbia University Press.Google Scholar
  5. Dafni, A. (1992) Pollination ecology, a practical approach. Oxford: Oxford University Press.Google Scholar
  6. Duch, J.G. (1988) La conformación territorial del Estado de Yucatán. México, DF: Universidad de Chapingo.Google Scholar
  7. Faegri, K. and van der Pijl, L. The principles of pollination ecology. Oxford: Pergamon Press.Google Scholar
  8. Flores, J.S. (1990) The flowering periods of Leguminosae en the Yucatan Peninsula in relation to honey flows. Journal of Apicultural Research 29, 82-8.Google Scholar
  9. Free, J.B. (1970) Insect pollination of crops. London: Academic Press.Google Scholar
  10. Garcia, E. (1981) Modificaciones al Sistema de clasificación climática de Koppen: adaptado a las condiciones climáticas de México. México: Instituto de Geografía-UNAM.Google Scholar
  11. GLIM 4 (1992) London: Royal Statistical Society.Google Scholar
  12. Herrera, C.M. (1987) Components of pollinator 'quality': comparative analysis of a diverse insect assemblage. Oikos 50, 79-90.Google Scholar
  13. Herrera, C.M. (1989) Pollinator abundance, morphology and flower visitation rate: Analysis of the 'quantity' component in a plant-pollinator system. Oecologia 80, 241-8.Google Scholar
  14. Hurd, Jr. P.D., Linsley, E.G. and Whitaker, T.W. (1971) Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 25, 218-34.Google Scholar
  15. Kearns, C.A., Inouye, D.W. and Waser, N.M. (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics 29, 83-112.Google Scholar
  16. Kevan, P.G., Clark, E.A. and Thomas, V.G. (1990) Insect pollinators and sustainable agriculture. American Journal of Alternative Agriculture 5, 13-22.Google Scholar
  17. Kevan, P., Mohr, N., Offer, M. and Kemp, J. (1988) The squash and gourd bee, Peponapis pruinosa (Hymenoptera: Anthophoridae) in Ontario, Canada. Proceedings of the Entomological Society of Ontario 119, 9-15.Google Scholar
  18. Lira, S.R. (1988) Cucurbitaceae de la Península de Yucatán: Taxonomía y etnobotánica. M.Sc. dissertation. Mérida, México: Instituto de Investigación para Recursos Bióticos.Google Scholar
  19. Lira, S.R. (1995) Estudios Taxonómicos y Ecogeográficos de las Cucurbitaceae Latinoamericanas de Importancia Económica. McGregor, S.E. (1976) Insect pollination of cultivated crop plants. Washington, DC: United States Department of Agriculture.Google Scholar
  20. Meléndez, V. (1997) Polinización y biodiversidad de abejas nativas asociadas a cultivos horticolas en el estado de Yucatán, México. M.Sc. dissertation. Mérida, México: Universidad Autónoma de Yucatán.Google Scholar
  21. Nee, M. (1990) The domestication of Cucurbita (Cucurbitaceae). Economic Botany 44, 56-68.Google Scholar
  22. O'Toole, C. (1993) Diversity of native bees and Agroecosystems. In Hymenoptera and Biodiversity (J. LaSalle and I. D. Gauld, eds), pp. 169-95. Wallingtord: Cab International.Google Scholar
  23. Oldroyd, B.P. (1999) Coevolution while you wait: Varroa jacobsoni, a new parasite of western honeybees. Trends in Ecology & Evolution 14, 312-15.Google Scholar
  24. Pinkus, R.M. (1998) Horario de uso y competencia por recursos florales entre la abeja introducida Apis mellifera L. y abejas nativas en cultivos de curcurbitáceas en X'matkuil Yucatán, México. B.Sc. Dissertation. Mérida, México: Universidad Autónoma deYucatán.Google Scholar
  25. Primack, R.B. (1993) Essentials of conservation biology. Sunderland Massachusetts: Sinauer.Google Scholar
  26. Primack, R.B. and Silander, Jr. J.A. (1975) Nature 225, 143.Google Scholar
  27. Proctor, M., Yeo, P. and Lack, A. (1996). The natural history of pollination. London: Harper Collins Publishers.Google Scholar
  28. Quesada, M., Winsor, J.A. and Stephenson, A.G. (1993) Effects of pollen competition on progeny performance in a heterozygous cucurbit. The American Naturalist 142, 694-706.Google Scholar
  29. Richards, K.W. (1996) Comparative efficacy of bee species for pollination of legume seed crops. In The conservation of bees (A. Matheson, S. Buchmann, C. O'Toole, P. Westrich and I.H. Williams, eds), pp. 81-103. London: Academic Press.Google Scholar
  30. Roubik, D.W. (1989) Ecology and natural history of tropical bees. Cambridge: Cambridge University Press.Google Scholar
  31. Seeley, D.T. (1985) Honey bee ecology: a study of adaptation in social life. Princeton: Princeton University Press.Google Scholar
  32. Stanley, R.G. and Linskens, H.F. (1974) Pollen biology, biochemistry, management. Berlin: Springer-Verlag.Google Scholar
  33. Stephen, W.P. (1972) Studies in crop pollination. Washington, DC: Organization of American States.Google Scholar
  34. Stephenson, A.G. and Bertin, R.I. (1983) Male competition, female choice, and sexual selection in plants. In Pollination biology (L. Real, ed), pp. 109-49. London: Academic Press.Google Scholar
  35. Sugden, E.A. (1993) The africanized honey bee phenomenon: potential societal interactions. American Bee Journal 132, 691-2.Google Scholar
  36. Tepedino, V.J. (1981) The pollination efficiency of squash bee (Peponapis pruinosa) and the honey bee (Apis mellifera) on summer squash (Cucurbita pepo). Journal of Kansas Entomological Society 54, 359-77.Google Scholar
  37. Thompson, J.N. (1997) Conserving interaction biodiversity. In The ecological basis of conservation, heterogeneity, ecosystems and biodiversity (S.T.A. Pickett, R.S. Ostfeld, M. Shachak and G.E. Likens, eds), pp. 285-93. New York: Chapman & Hall.Google Scholar
  38. Torchio, P.F. (1994) The present status and future prospects of non social bees as crop pollinators. Bee World 75, 49-53.Google Scholar
  39. Whitaker, T. (1980) Cucurbitáceas americanas Útiles al hombre. La Plata, Argentina: Comisión de investigaciones Científicas.Google Scholar
  40. Willis, D.S. and Kevan, P.G. (1995) Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumkin (Cucurbita pepo) in southern Ontario. The Canadian Entomologist 127, 167-75.Google Scholar
  41. Zar, J.H. (1984) Biostatical analysis. New Jersey: Prentice-Hall.Google Scholar
  42. Zizumbo, V.D. (1992) Las calabazas del sistema milpero como recurso genético. In La modernización de la milpa en Yucatán: utopía o realidad (V.D. Zizumbo, C.H. Rasmussen, L.M. Arias-Reyes and S. Terán-Contreras, eds), pp. 161-74. Yucatán Mexico: CICY.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • María Azucena Canto-Aguilar
    • 1
  • Víctor Parra-Tabla
    • 2
  1. 1.Departamento de Ecología, Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma de YucatánMérida YucatánMéxico
  2. 2.Departamento de Ecología, Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma de YucatánMérida YucatánMéxico

Personalised recommendations