Molecular Breeding

, Volume 6, Issue 1, pp 73–78

Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants

  • Ashok K. Jain
  • Craig L. Nessler
Article

Abstract

Plants and most animals can synthesize their own L-ascorbic acid (vitamin C), but a mutation in the L-gulono-γ-lactone oxidase gene in the primate lineage makes it necessary for humans to acquire this vital compound from their diet. Despite the fact that plants and animals synthesize ascorbic acid via different pathways, transgenic tobacco and lettuce plants expressing a rat cDNA encoding L-gulono-γ-lactone oxidase accumulated up to seven times more ascorbic acid than untransformed plants. These results demonstrate that basal levels of ascorbic acid in plants can be significantly increased by expressing a single gene from the animal pathway.

ascorbic acid Lactuca sativa L-gulono-γ-lactone oxidase Nicotiana tabacum plant metabolic engineering vitamin C 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrech JA: Ascorbic acid content and retention in lettuce. J Food Quality 16: 311–316 (1993).Google Scholar
  2. 2.
    Behrens WA, Madere R: A highly sensitive high-performance liquid chromatography method for the estimation of ascorbic and dehydroascorbic acid in tissues, biological fluids and foods. Anal Biochem 165: 102–107 (1987).Google Scholar
  3. 3.
    Behrens WA, Madere R: Quantitative analysis of ascorbic acid and isoascorbic acid in foods by high-performance liquid chromatography with electrochemical detection. J Liq Chrom 15: 753–765 (1992).Google Scholar
  4. 4.
    Bevan M: Binary Agrobacterium vectors for plant cell transformation. Nucl Acids Res 12: 8711–8721 (1984).Google Scholar
  5. 5.
    Conkin PL, Pallanca JE, Last RL, Smirnoff N: L-Ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vtc1. Plant Physiol 115: 1277–1285 (1997).Google Scholar
  6. 6.
    Curtis IS, Power JB, Blackhall NW, De Laat AMM, Davey MR: Genotype-independent transformation of lettuce using Agrobacterium tumefaciens. J Exp Bot 45: 1441–1449 (1994).Google Scholar
  7. 7.
    Horsch R, Fry JE, Hoffmann NL, Eichholtz, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1985).Google Scholar
  8. 8.
    Isherwood FA, Mapson LW: Ascorbic acid metabolism in plants. Part II. Biosynthesis. Annu Rev Plant Physiol 13: 329–350 (1962).Google Scholar
  9. 9.
    Jorgensen RA: Cosuppression, flower color patterns, and metastable gene expression states. Science 268: 686–691 (1995).Google Scholar
  10. 10.
    Koshizaka T, Nishikimi M, Ozawa T, Yagi K: Isolation and sequence analysis of a complementry DNA encoding rat liver L-gulono-?-lactone oxidase, a key enzyme for l-ascorbic acid biosynthesis. J Biol Chem 263: 1619–1621 (1988).Google Scholar
  11. 11.
    Loewus FA: Ascorbic acid and its metabolic products. In: Priess J (ed) The Biochemistry of plants, Vol. 14, pp. 85–107. Academic Press, New York (1988).Google Scholar
  12. 12.
    Mapson, LW, Breslow, E. Biological synthesis of ascorbic acid: galactono-?-lactone dehydrogenase. Biochem J 68: 359–406 (1958).Google Scholar
  13. 13.
    Mapson LW, Isherwood FA: Biological synthesis of ascorbic acid: the conversion of derivatives of D-galacturonic acid into L-ascorbic acid by plant extracts. Biochem J 64: 151–157 (1956).Google Scholar
  14. 14.
    Nishikimi M, Yagi K: Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis. Am J Clin Nutr 54: 1203S–1208S (1991).Google Scholar
  15. 15.
    Oba K, Ishikawa S, Nishikawa Mizuno H: Purification and properties of L-galactono--lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J Biochem 117: 120–124 (1995).Google Scholar
  16. 16.
    Omaye ST, Turnbull JD, Sauberlich HE: Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. Meth Enzymol 62: 3–11 (1979).Google Scholar
  17. 17.
    Ostergaad J, Persiau G, Davey MW, Bauw G, Van Montagu M: Isolation of a cDNA coding for L-galactono--lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeast. J Biol Chem 272: 30009–30016 (1997).Google Scholar
  18. 18.
    Restrepo MA, Freed DD, Carrington JC: Nuclear transport of plant potyviral proteins. Plant Cell 2: 987–998 (1990).Google Scholar
  19. 19.
    Sherman JM, Pillus L: An uncertain silence. Trends Genet 13: 308–313 (1997).Google Scholar
  20. 20.
    Smirnoff N: The function and metabolism of ascorbic acid in plants. Ann Bot 78: 661–669 (1996).Google Scholar
  21. 21.
    Smyth DR: Gene silencing: Cosuppression at a distance. Curr Biol 7: R793–R795 (1997).Google Scholar
  22. 22.
    Torres AC, Cantliffe DJ, Laughner B, Bieniek M, Nagata R, Ashraf M, Ferl RJ: Stable transformation of lettuce cultivar south bay from cotyledon explants. Plant Cell Tiss Organ Cult 34: 279–285 (1993).Google Scholar
  23. 23.
    Wheeler GL, Jones MA, Smirnoff N: The biosynthetic pathway of vitamin C in higher plants. Nature 393: 365–369 (1998).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Ashok K. Jain
    • 1
  • Craig L. Nessler
    • 2
  1. 1.Plant Biotechnology Laboratory, Division of Agricultural SciencesFlorida A&M UniversityTallahasseeUSA
  2. 2.Department of BiologyTexas A&M UniversityCollege StationUSA

Personalised recommendations