Advertisement

Journal of Porous Materials

, Volume 7, Issue 1–3, pp 17–22 | Cite as

Monitoring Anodic Silicon Dissolution in Acidic Fluoride Electrolyte by the Mirage Effect

  • Danilo Dini
  • Sandro Cattarin
  • Franco Decker
Article

Abstract

Probe beam deflection (PBD) technique was used for the in-situ characterization of p-Si anodic dissolution in fluoride containing acidic media in the regimes of porous Si formation, electropolishing and sustained electrochemical oscillations. When trends in deflectometric signal differed from those of current density, PBD could provide complementary informations on the occurrence of chemical reactions at the electrode. A model is proposed for the estimation of oxide thickness based on the instantaneous formation and dissolution rates in galvanostatic conditions. Results point to the existence of different oxide phases at the p-Si/electrolyte interface.

porous silicon electropolishing anodic silicon dissolution probe beam deflection technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.C. Searson, in Advances in Electrochemical Science and Engineering, Vol. 4, edited by H. Gerischer and C.W. Tobias (VCH, Weinheim, 1995), p. 69.Google Scholar
  2. 2.
    X.G. Zhang, S.D. Collins, and R.L. Smith, Journal of Electrochemical Society 136, 1561 (1989).Google Scholar
  3. 3.
    G. Bomchil, A. Halimaoui, and R. Herino, Microelectronics Engineering 8, 293 (1988).Google Scholar
  4. 4.
    F. Decker, R.T. Neuenschwander, C.L. Cesar, and A.F.S. Penna, Journal of Electroanalytical Chemistry 228, 481 (1987).Google Scholar
  5. 5.
    F. Decker and M. Fracastoro-Decker, Journal of Electroanalytical Chemistry 243, 187 (1988).Google Scholar
  6. 6.
    O. Haas, Faraday Discussions Chemical Society 88, 123 (1989).Google Scholar
  7. 7.
    R.N. O'Brien, in Physical Methods of Chemistry, Part 3A, edited by A. Weissberger and B.W. Rossiter (Wiley Interscience, New York, 1972), p. 1.Google Scholar
  8. 8.
    J.-N. Chazalviel, F. Ozanam, M. Etman, F. Paolucci, L.M. Peter, and J. Stumper, Journal of Electroanalytical Chemistry 327, 343 (1992).Google Scholar
  9. 9.
    V. Lehmann, Journal of Electrochemical Society 143, 1313 (1996).Google Scholar
  10. 10.
    V.P. Parkhutik, Electrochimica Acta 36, 1611 (1991).Google Scholar
  11. 11.
    C. Serre, S. Barret, and R. Herino, Journal of Electroanalytical Chemistry 370, 145 (1994).Google Scholar
  12. 12.
    H. Foll, Applied Physics A 53, 8 (1991).Google Scholar
  13. 13.
    M. Matsumura and S.R. Morrison, Journal of Electroanalytical Chemistry 147, 157 (1983).Google Scholar
  14. 14.
    H.J. Lewerenz, Electrochimica Acta 37, 847 (1992).Google Scholar
  15. 15.
    J.M. Rosolen, M. Fracastoro-Decker, and F. Decker, Journal of Electroanalytical Chemistry 365, 165 (1994).Google Scholar
  16. 16.
    S. Cattarin, F. Decker, and D. Dini, Journal of Physical Chemistry 102, 1313 (1998).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Danilo Dini
    • 1
  • Sandro Cattarin
    • 2
  • Franco Decker
    • 1
  1. 1.Dipartimento di ChimicaUniversita' di Roma “La Sapienza”RomeItaly
  2. 2.Istituto di Polarografia ed Elettrochimica Preparativa—C.N.R.PaduaItaly

Personalised recommendations