Foundations of Science

, Volume 3, Issue 2, pp 207–229 | Cite as

Unification of Mathematical Theories

  • Krzysztof Wójtowicz
Article

Abstract

In this article the problem of unification of mathematical theories is discussed. We argue, that specific problems arise here, which are quite different than the problems in the case of empirical sciences. In particular, the notion of unification depends on the philosophical standpoint. We give an analysis of the notion of unification from the point of view of formalism, Gödel's platonism and Quine's realism. In particular we show, that the concept of “having the same object of study” should be made precise in the case of mathematical theories. In the appendix we give a working proposal of a certain understanding of this notion.

bridge laws formalism mathematical realism quasi-empiricism reverse mathematics set theory unification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. P. Bernays: 1964, On Platonism in Mathematics, reprinted in: P. Benacerraf and H. Putnam H. (eds): Philosophy of Mathematics, Prentice-Hall.Google Scholar
  2. J. Brown: 1990, II in the Sky. In A.D. Irvine (ed): Physicalism in Mathematics. Kluwer Academic Publishers.Google Scholar
  3. Cantor: 1932, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Hrsg. E. Zermelo, Verlag von Julius Springer, Berlin 1932; reprinted: Springer-Verlag, 1980.Google Scholar
  4. P.J. Cohen: 1971, Comments on the Foundations of Set Theory. In D. Scott (ed): Axiomatic Set Theory, Proceedings in Symposia in Pure Mathematics, 13, part 1, AMS, Provindence, Rhode Island.Google Scholar
  5. H.B. Curry: 1951, Formalist Philosophy ofMathematics. North-Holland, Amsterdam.Google Scholar
  6. K. Gödel: 1947, What is Cantor's Continum Problem?, reprinted in: P. Benacerraf and H. Putnam (eds): Philosophy of Mathematics, Prentice-Hall.Google Scholar
  7. G.H. Hardy: 1929, Mathematical Proof. Mind 38: 1–25.Google Scholar
  8. K. Kunen: 1980, Set Theory. North-Holland.Google Scholar
  9. I. Lakatos: 1976, Proofs and Refutations. Cambridge University Press, Cambridge.Google Scholar
  10. S. Mac Lane: 1986, Mathematics: Form and Function. Springer-Verlag.Google Scholar
  11. Y. Moschovakis: 1980, Descriptive Set Theory. North-Holland.Google Scholar
  12. J. PARIS and L. Harrington: 1977, A Mathematical Incompleteness in Peano Arithmetic. In J. Barwise (ed): Handbook of Mathematical Logic. North-Holland, Amsterdam.Google Scholar
  13. A. Robinson: 1964, Formalism 64. In Proceedings, International Congress for Logic, Methodology and Philosophy of Science.Google Scholar
  14. W.V.O. Quine: 1964, Two Dogmas of Empiricsm, reprinted in: P. Benacerraf and H. Putnam (eds): Philosophy of Mathematics. Prentice-Hall.Google Scholar
  15. W.V.O. Quine: 1969, Existence and Quantification. In Ontological Relativity and Other Essays. Columbia University Press, New York.Google Scholar
  16. S.G. Simpson: 1987, Subsystems of Z2 and Reverse Mathematics. In G. Takuti (ed.): Proof Theory. North-Holland, Amsterdam.Google Scholar
  17. S.G. Simpson: 1988, Partial Realisations of Hilbert's Program. Journal of Symbolic Logic 53: 349–363CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Krzysztof Wójtowicz
    • 1
  1. 1.Institute of PhilosophyUniversity of Warsow, Krakowskie Przedmiescie 3WarszawaPoland

Personalised recommendations