Skip to main content
Log in

Role of the newer p53 family proteins in malignancy

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The most recently identified members of the p53 family, p63 and p73, share certain structural and functional similarities with p53. Both p63 and p73 can bind to canonical p53-DNA-binding sites, transactivate the promoters of known p53 target genes and induce apoptosis. Despite these similarities there are many important differences. In contrast to p53, p63 and p73 give rise to multiple distinct protein isoforms that have different functional properties. Upstream signaling pathways involved in the activation of p63 and p73 differ from those involved in p53 activation. Only a subset of the DNA damaging agents that induce p53 can induce p73. Cellular and viral oncoproteins can discriminate between p53 and the newer family members. In addition, the levels of p63 and p73 are affected by certain states of cellular differentiation. Finally, it is becoming clear that the newest members of the p53 family are not classical tumor suppressor genes. In contrast to the high prevalence of p53 mutations in human cancers, p63 and p73 mutations are rare. Indeed, levels of p73 increase during malignant progression. In addition, unlike p53-/- mice, mice lacking p63 and p73 do not develop tumors, but instead have significant developmental abnormalities. Mutations in p63 have also been detected in humans with the ectodermal dysplastic syndrome EEC. Further studies are required to determine whether qualitative or quantitative differences in the expression of p63 and p73 isoforms are important in the development of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ko LJ, Privies C. p53: Puzzle and paradigm. Genes & Dev 1996; 10: 1054–1072.

    Google Scholar 

  2. McGill G, Fisher DE. p53 and cancer therapy:Adouble-edged sword. J Clin Invest 1999; 104(3): 223–225.

    PubMed  Google Scholar 

  3. Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997; 90: 809–819.

    Article  PubMed  Google Scholar 

  4. Yang A, Kaghad M, Wang Y, et al. p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 1998; 2(3): 305–316.

    Article  PubMed  Google Scholar 

  5. Schmale H, Bamberger C. A novel protein with strong homology to the tumor suppressor p53. Oncogene 1997; 15: 1363–1367.

    PubMed  Google Scholar 

  6. Osada M, Ohba M, Kawahara C, et al. Cloning and functional analysis of human p51, which structurally and functionally resembles p53 [see comments] [published erratum appears in Nat Med 1998 Sep; 4(9): 982]. Nat Med 1998; 4(7): 839–843.

    Article  PubMed  Google Scholar 

  7. Trink B, Okami K, Wu L, Sriuranpong V, Jen J, Sidransky D. A New Human p53 Homologue. Nature Medicine 1998; 4: 747.

    PubMed  Google Scholar 

  8. Senoo M, Seki N, Ohira M, et al. A Second p53-Related Protein, p73L, with High Homology to p73. Biochemical and Biophysical Res Comm 1998; 248: 603–607.

    Google Scholar 

  9. Jost C, Marin M, Kaelin WJ. p73 is a human p53-related protein that can induce apoptosis. Nature 1997; 389: 191–194.

    Article  PubMed  Google Scholar 

  10. Marin MC, Kaelin W. p63 and p73: Old members of a new family. Biochem Biophys Acta 2000; 1470(3): M93–100.

    PubMed  Google Scholar 

  11. Casciano I, Ponzoni M, Lo Cunsolo C, Tonini GP, Romani M. Different p73 splicing variants are expressed in distinct tumour areas of a multifocal neuroblastoma [letter]. Cell Death Differ 1999; 6(5): 391–393.

    PubMed  Google Scholar 

  12. De Laurenzi V, Costanzo A, Barcaroli D, et al. Two new p73 splice variants, gamma and delta, with different transcriptional activity. J Exp Med 1998; 188(9): 1763–1768.

    PubMed  Google Scholar 

  13. De Laurenzi VD, Catani MV, Terrinoni A, et al. Additional complexity in p73: Induction by mitogens in lymphoid cells and identification of two new splicing variants epsilon and zeta [letter]. Cell Death Differ 1999; 6(5): 389–390.

    PubMed  Google Scholar 

  14. Kong X, Valentine VA, Rowe ST, et al. Lack of Homozygosly Inactivated p73 in Single-Copy MYCN Primary Neuroblastomas and Neuroblastoma Cell Lines. Neoplasia 1999; 1(1): 80–89.

    PubMed  Google Scholar 

  15. Ueda Y, Hijikata M, Takagi S, Chiba T, Shimotohno K. New p73 variants with altered C-terminal structures have varied transcriptional activities. Oncogene 1999; 18(35): 4993–4998.

    PubMed  Google Scholar 

  16. Yang A, Walker N, Bronson R, et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 2000; 404(6773): 99–103.

    PubMed  Google Scholar 

  17. Kaelin WG. The emerging p53 gene family. J Natl Cancer Inst 1999; 91: 594–598.

    PubMed  Google Scholar 

  18. Takada N, Ozaki T, Ichimiya S, Todo S, Nakagawara A. Identification of a transactivation activity in the COOH-terminal region of p73 which is impaired in the naturally occurring mutants found in human neuroblastomas. Cancer Res 1999; 59(12): 2810–2814.

    PubMed  Google Scholar 

  19. Kaelin WG, Jr. The p53 gene family. Oncogene 1999; 18(53): 7701–7705.

    PubMed  Google Scholar 

  20. Marin MC, Jost C, Irwin MS, DeCaprio JA, Caput D, Kaelin WG. Viral Oncoproteins Discriminate between p53 and the p53 Homolog p73. Mol Cell Biol 1998; 18: 6316–6324.

    PubMed  Google Scholar 

  21. Thanos CD, Bowie JU. p53 Family members p63 and p73 are SAM domain-containing proteins. Protein Sci 1999; 8(8): 1708–1710.

    PubMed  Google Scholar 

  22. Chi SW, Ayed A, Arrowsmith CH. Solution structure of a conserved C-terminal domain of p73 with structural homology to the SAM domain. Embo J 1999; 18(16): 4438–4445.

    PubMed  Google Scholar 

  23. Jousset C, Carron C, Boureux A, et al. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR beta oncoprotein. Embo J 1997; 16(1): 69–82.

    PubMed  Google Scholar 

  24. Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994; 77(2): 307–316.

    PubMed  Google Scholar 

  25. Walker K, Levine A. Identification of a Novel p53 Functional Domain that is Necessary For Efficient Growth Suppression. Proc Natl Acad Sci 1996; 93(December): 15335–15340.

    PubMed  Google Scholar 

  26. Sakamuro D, Sabbatini P, White E, GC P. The Polyproline Region of p53 is Required to Activate Apoptosis but Not Growth Arrest. Oncogene 1997; 15: 887–898.

    PubMed  Google Scholar 

  27. Zhu J, Jiang J, Zhou W, Zhu K, Chen X. Differential regulation of cellular target genes by p53 devoid of the PXXP motifs with impaired apoptotic activity. Oncogene 1999; 18(12): 2149–2155.

    PubMed  Google Scholar 

  28. Alexandropoulos K, Cheng G, Baltimore D. Proline-rich sequences that bind to Src homology 3 domains with individual specificities. Proc Natl Acad Sci USA 1995; 92(8): 3110–3114.

    PubMed  Google Scholar 

  29. Agami R, Blandino G, Oren M, Shaul Y. Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature 1999; 399: 809–813.

    PubMed  Google Scholar 

  30. De Laurenzi V, Raschella G, Barcaroli D, et al. Induction of neuronal differentiation by p73 in a neuroblastoma cell line. J Biol Chem 2000; 275(20): 15226–15231.

    PubMed  Google Scholar 

  31. Gong J, Costanzo A, Yang H, et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 1999; 399: 806–808.

    PubMed  Google Scholar 

  32. Yuan Z-M, Shioya H, Ishiko T, et al. p73 is regulated by tyrosine kinase c-Abl in the apoptotic reponse to DNA damage. Nature 1999; 399(399): 814–817.

    PubMed  Google Scholar 

  33. Shaul Y. c-abl: Activation and nuclear targets [In Process Citation]. Cell Death Differ 2000; 7(1): 10–16.

    PubMed  Google Scholar 

  34. Levrero M, De Laurenzi V, Costanzo A, Gong J, Melino G, Wang JY. Structure, function and regulation of p63 and p73 [see comments]. Cell Death Differ 1999; 6(12): 1146–1153.

    PubMed  Google Scholar 

  35. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296–299.

    PubMed  Google Scholar 

  36. Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 1997; 420(1): 25–27.

    PubMed  Google Scholar 

  37. Kubbutat M, Jones S, Vousden K. Regulation of p53 stability by Mdm2. Nature 1997; 387: 299–303.

    PubMed  Google Scholar 

  38. Zhang Y, Xiong Y, Yarbrough W. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92: 725–734.

    PubMed  Google Scholar 

  39. Pomerantz J, Schreiber-Agus N, Liegeois N, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2and neutralizes MDM2's inhibition of p53. Cell 1998; 92: 713–723.

    PubMed  Google Scholar 

  40. Sherr C. Tumor surveillance via the ARF-p53 pathway. Genes & Dev 1998; 12: 2984–2991.

    Google Scholar 

  41. Oliner J, Pietenpol J, Thiagalingam S, Gyuris J, Kinzler K, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 1993; 362: 857–860.

    PubMed  Google Scholar 

  42. Balint E, Bates S, Vousden KH. Mdm-2 binds p73 alpha without targeting degradation. Oncogene 1999; 18(27): 3923–3929.

    PubMed  Google Scholar 

  43. Ongkeko WM, Wang XQ, SiuWY, et al. MDM2andMDMX bind and stabilize the p53-related protein p73. Curr Biol 1999; 9(15): 829–832.

    PubMed  Google Scholar 

  44. Zeng X, Li X, Miller A, et al. The N-terminal domain of p73 nteracts with the CH1 domain of p300/CREB binding protein and mediates transcriptional activation and apoptosis. Mol Cell Biol 2000; 20(4): 1299–1310.

    PubMed  Google Scholar 

  45. Kubbutat MH, Ludwig RL, Ashcroft M, Vousden KH. Regulation of Mdm2-directed degradation by the C-terminus of p53. Mol Cell Biol 1998; 18(10): 5690–5698.

    PubMed  Google Scholar 

  46. Ding Y, Inoue T, Kamiyama J, et al. Molecular cloning and functional characterization of the upstream promoter region of the human p73 gene. DNA Res 1999; 6(5): 347–351.

    PubMed  Google Scholar 

  47. Irwin MS, Marin MC, Phillips AC, et al. Role for the p53 homolog p73 in E2F1-induced Apoptosis. Nature 2000; 407(6804): 645–648.

    PubMed  Google Scholar 

  48. Zaika AI, Kovalev S, Marchenko ND, Moll UM. Overexpression of the wild-type p73 gene in breast cancer tissues and cell lines. Cancer Research 1999; 59(13): 3257–3263.

    PubMed  Google Scholar 

  49. Mai M, Yokomizo A, Qian C, et al. Activation of p73 Silent Allele in Lung Cancer. Cancer Res 1998: 2347–2349.

  50. Takahashi H, Ichimiya S, Nimura Y, et al. Mutation, allelotyping, and transcription analyses of the p73 gene in prostatic carcinoma. Cancer Res 1998; 58(10): 2076–2077.

    PubMed  Google Scholar 

  51. Imyanitov EN, Birrell GW, Filippovich I, et al. Frequent loss of heterozygosity at 1p36 in ovarian adenocarcinomas but the gene encoding p73 is unlikely to be the target. Oncogene 1999; 18(32): 4640–4642.

    PubMed  Google Scholar 

  52. Ng SW, Yiu GK, Liu Y, et al. Analysis of p73 in human borderline and invasive ovarian tumor. Oncogene 2000; 19(15): 1885–1890.

    PubMed  Google Scholar 

  53. Sunahara M, Ichimiya S, Nimura Y, et al. Mutational analysis of the p73 gene localized at chromosome 1p36.3 in colorectal carcinomas. Int J Oncol 1998; 13(2): 319–323.

    PubMed  Google Scholar 

  54. Loiseau H, Arsaut J, Demotes-Mainard J. p73 gene transcripts in human brain tumors: Overexpression and altered splicing in ependymomas. Neurosci Lett 1999; 263: 173–176.

    PubMed  Google Scholar 

  55. Scharnhorst V, Dekker P, van Der Eb AJ, Jochemsen AG. Physical interaction between wilms tumor 1 and p73 proteins modulates their functions [In Process Citation]. J Biol Chem 2000; 275(14): 10202–10211.

    PubMed  Google Scholar 

  56. Roth J, Konig C, Wienzek S, Weigel S, Ristea S, Dobbelstein M. Inactivation of p53 but not p73 by adenovirus type 5 E1B 55-kilodalton and E4 34-kilodalton oncoproteins. J Virol 1998; 72: 8510–8516.

    PubMed  Google Scholar 

  57. Roth J, Dobbelstein M. Failure of viral oncoproteins to target the p53-homologue p51A. J Gen Virol 1999; 80(Pt 12): 3251–3255.

    PubMed  Google Scholar 

  58. Prabhu NS, Somasundaram K, Satyamoorthy K, Herlyn M, El-Deiry WS. p73beta, unlike p53, suppresses growth and induces apoptosis of human papillomavirus E6-expressing cancer cells. Int J Oncol 1998; 13(1): 5–9.

    PubMed  Google Scholar 

  59. Higashino F, Pipas JM, Shenk T. Adenovirus E4orf6 oncoprotein modulates the function of the p53-related protein, p73. Proc Natl Acad Sci USA 1998; 95(26): 15683–15687.

    PubMed  Google Scholar 

  60. Steegenga WT, Shvarts A, Riteco N, Bos JL, Jochemsen AG. Distinct regulation of p53 and p73 activity by adenovirus E1A, E1B, and E4orf6 proteins. Mol Cell Biol 1999; 19(5): 3885–3894.

    PubMed  Google Scholar 

  61. Kaida A, Ariumi Y, Ueda Y, et al. Functional impairment of p73 and p51, the p53-related proteins, by the human T-cell leukemia virus type 1 Tax oncoprotein. Oncogene 2000; 19(6): 827–830.

    PubMed  Google Scholar 

  62. Young R. Biomedical Discovery with DNA Arrays. Cell 2000; 102: 9–15.

    PubMed  Google Scholar 

  63. Lee CW, La Thangue NB. Promoter specificity and stability control of the p53-related protein p73. Oncogene 1999; 18(29): 4171–4181.

    PubMed  Google Scholar 

  64. Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B. Identification and classification of p53-regulated genes. Proc Natl Acad Sci USA 1999; 96(25): 14517–14522.

    PubMed  Google Scholar 

  65. Zhu J, Jiang J, Zhou W, Chen X. The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer Res 1998; 58(22): 5061–5065.

    PubMed  Google Scholar 

  66. Shimada A, Kato S, Enjo K, et al. The Transcriptional Activities of p53 and Its Homologue p51/p63: Similarities and Differences. Cancer Research 1999; 59: 2781–2786.

    PubMed  Google Scholar 

  67. Donehower LA, Harvey M, Slagle BL, et al. p53-deficient mice are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356: 215–221.

    Article  PubMed  Google Scholar 

  68. Yang A, Schweitzer R, Sun D, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999; 398: 714–718.

    PubMed  Google Scholar 

  69. Mills AA, Zheng B, Wang X, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999; 398: 708–713.

    PubMed  Google Scholar 

  70. Herranz M, Santos J, Salido E, Fernandez-Piqueras J, Serrano M. Mouse p73 gene maps to the distal part of chromosome 4 and might be involved in the progression of gamma-radiationinduced T-cell lymphomas. Cancer Res 1999; 59(9): 2068–2071.

    PubMed  Google Scholar 

  71. Kovalev S, Marchenko N, Swendemann S, LaQuaglia M, Moll UM. Expression level, allelic origin and mutation analysis of the p73 gene in neuroblastoma tumors and cell lines. Cell Growth and Diff 1998; 9(11): 897–903.

    Google Scholar 

  72. Ichimiya S, Nimura Y, Kageyama H, et al. p73 at chromosome 1p36.3 is lost in advanced stage neuroblastoma but its mutation is infrequent. Oncogene 1999; 18(4): 1061–1066.

    PubMed  Google Scholar 

  73. Ejeskar K, Sjoberg RM, Kogner P, Martinsson T. Variable expression and absence of mutations in p73 in primary neuroblastoma tumors argues against a role in neuroblastoma development. Int J Mol Med 1999; 3(6): 585–589.

    PubMed  Google Scholar 

  74. Han S, Semba S, Abe T, et al. Infrequent somatic mutations of the p73 gene in various human cancers. Eur J Surg Oncol 1999; 25(2): 194–198.

    PubMed  Google Scholar 

  75. Shishikura T, Ichimiya S, Ozaki T, et al. Mutational analysis of the p73 gene in human breast cancers. Int J Cancer 1999; 84(3): 321–325.

    PubMed  Google Scholar 

  76. Schwartz DI, Lindor NM, Walsh-Vockley C, et al. p73 mutations are not detected in sporadic and hereditary breast cancer. Breast Cancer Res Treat 1999; 58(1): 25–29.

    PubMed  Google Scholar 

  77. Nomoto S, Haruki N, Kondo M, Konishi H, Takahashi T. Search for mutations and examination of allelic expression imbalance of the p73 gene at 1p36.33 in human lung cancers. Cancer Res 1998; 58(7): 1380–1383.

    PubMed  Google Scholar 

  78. Tokuchi Y, Hashimoto T, Kobayashi Y, et al. The expression of p73 is increased in lung cancer, independent of p53 gene alteration. Br J Cancer 1999; 80(10): 1623–1629.

    PubMed  Google Scholar 

  79. Mai M, Qian C, Yokomizo A, et al. Loss of imprinting and allele switching of p73 in renal cell carcinoma. Oncogene 1998; 17(13): 1739–1741.

    PubMed  Google Scholar 

  80. Chi SG, Chang SG, Lee SJ, Lee CH, Kim JI, Park JH. Elevated and biallelic expression of p73 is associated withprogression of human bladder cancer. Cancer Res 1999; 59(12): 2791–2793.

    PubMed  Google Scholar 

  81. Yokomizo A, Mai M, Tindall DJ, et al. Overexpression of the wild type p73 gene in human bladder cancer. Oncogene 1999; 18(8): 1629–1633.

    PubMed  Google Scholar 

  82. Yokomizo A, Mai M, Bostwick DG, et al. Mutation and expression analysis of the p73 gene in prostate cancer. Prostate 1999; 39(2): 94–100.

    PubMed  Google Scholar 

  83. Yokozaki H, ShitaraY, Fujimoto J, Hiyama T, Yasui W, Tahara E. Alterations of p73 preferentially occur in gastric adenocarcinomas with foveolar epithelial phenotype. Int J Cancer 1999; 83(2): 192–196.

    PubMed  Google Scholar 

  84. Nimura Y, Mihara M, Ichimiya S, et al. p73, a gene related to p53, is not mutated in esophageal carcinomas. Int J Cancer 1998; 78(4): 437–440.

    PubMed  Google Scholar 

  85. Cai YC, Yang G, Nie Y, et al. Molecular alterations of p73 in human esophageal squamous cell carcinomas: Loss of heterozygosity occurs frequently; loss of imprinting and elevation of p73 expression may be related to defective p53. Carcinogenesis 2000; 21(4): 683–689.

    PubMed  Google Scholar 

  86. Mihara M, Nimura Y, Ichimiya S, et al. Absence of mutation of the p73 gene localized at chromosome 1p36.3 in hepatocellular carcinoma. Br J Cancer 1999; 79(1): 164–167.

    PubMed  Google Scholar 

  87. Tannapfel A, Wasner M, Krause K, et al. Expression of p73 and its relation to histopathology and prognosis in hepatocellular carcinoma. J Natl Cancer Inst 1999; 91(13): 1154–1158.

    PubMed  Google Scholar 

  88. Tannapfel A, Engeland K, Weinans L, et al. Expression of p73, a novel protein related to the p53 tumour suppressor p53, and apoptosis in cholangiocellular carcinoma of the liver. Br J Cancer 1999; 80(7): 1069–1074.

    PubMed  Google Scholar 

  89. Mai M, Huang H, Reed C, et al. Genomic organization and mutation analysis of p73 in oligodendrogliomas with chromosome 1 p-arm deletions. Genomics 1998; 51(3): 359–363.

    PubMed  Google Scholar 

  90. Kroiss MM, Bosserhoff AK, Vogt T, et al. Loss of expression or mutations in the p73 tumour suppressor gene are not involved in the pathogenesis of malignant melanomas. Melanoma Res 1998; 8(6): 504–509.

    PubMed  Google Scholar 

  91. Schittek B, Sauer B, Garbe C. Lack of p73 mutations and late occurrence of p73 allelic deletions in melanoma tissues and cell lines. Int J Cancer 1999; 82(4): 583–586.

    PubMed  Google Scholar 

  92. Van Gele M, Kaghad M, Leonard JH, et al. Mutation analysis of P73 and TP53 in Merkel cell carcinoma. Br J Cancer 2000; 82(4): 823–826.

    PubMed  Google Scholar 

  93. Corn PG, Kuerbitz SJ, van Noesel MM, et al. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5' CpG island methylation. Cancer Res 1999; 59(14): 3352–3356.

    PubMed  Google Scholar 

  94. Kawano S, Miller CW, Gombart AF, et al. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 1999; 94(3): 1113–1120.

    PubMed  Google Scholar 

  95. Caron H, van Sluis P, van Hoeve M, et al. Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with N-myc amplification. Nature Genetics 1993; 4: 187–191.

    PubMed  Google Scholar 

  96. Hu J, Ulaner GA, Oruganti H, et al. Allelic expression of the putative tumor suppressor gene p73 in human fetal tissues and tumor specimens. Biochim Biophys Acta 2000; 1491(1–3): 49–56.

    PubMed  Google Scholar 

  97. Kovalev S, Marchenko N, Swendeman S, LaQuaglia M, Moll UM. Expression level, allelic origin, and mutation analysis of the p73 gene in neuroblastoma tumors and cell lines. Cell Growth Differ 1998; 9(11): 897–903.

    PubMed  Google Scholar 

  98. Liu W, Mai M, Yokomizo A, et al. Differential expression and allelotyping of the p73 gene in neuroblastoma. Int J Oncol 2000; 16(1): 181–185.

    PubMed  Google Scholar 

  99. Di Como CJ, Gaiddon C, Prives C. p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 1999; 19 (2): 1438–1449.

    PubMed  Google Scholar 

  100. Marin MC, Jost CA, Brooks LA, et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet 2000; 25(1): 47–54.

    PubMed  Google Scholar 

  101. Strano S, Munarriz E, Rossi M, et al. Physical and functional interaction between p53 mutants and different isoforms of p73. J Biol Chem 2000; 275(38): 29503–29512.

    PubMed  Google Scholar 

  102. Ikawa S, Nakagawara A, IkawaY. p53 family genes: Structural comparison, expression and mutation [see comments]. Cell Death Differ 1999; 6(12): 1154–1161.

    PubMed  Google Scholar 

  103. Sunahara M, Shishikura T, Takahashi M, et al. Mutational analysis of p51A/TAp63gamma, a p53 homolog, in non-small cell lung cancer and breast cancer. Oncogene 1999; 18(25): 3761–3765.

    PubMed  Google Scholar 

  104. Nishi H, Isaka K, Sagawa Y, et al. Mutation and transcription analyses of the p63 gene in cervical carcinoma. Int J Oncol 1999; 15(6): 1149–1153.

    PubMed  Google Scholar 

  105. Hibi K, Trink B, MP, et al. AIS is an oncogene amplified in squamous cell carcinoma. PNAS 2000; 97(10): 5462–5467.

    PubMed  Google Scholar 

  106. Hagiwara K, McMenamin MG, Miura K, Harris CC. Mutational analysis of the p63/p73L/p51/p40/CUSP/KET gene in human cancer cell lines using intronic primers. Cancer Res 1999; 59(17): 4165–4169.

    PubMed  Google Scholar 

  107. Yamaguchi K, Wu L, Caballero OL, et al. Frequent gain of the p40/p51/p63 gene locus in primary head and neck squamous cell carcinoma. Int J Cancer 2000; 86(5): 684–689.

    PubMed  Google Scholar 

  108. Hall PA, Campbell SJ, O'Neill M, et al. Expression of the p53 homologue p63alpha and deltaNp63alpha in normal and neoplastic cells. Carcinogenesis 2000; 21(2): 153–160.

    PubMed  Google Scholar 

  109. Celli J, Duijf P, Hamel BC, et al. Heterozygous Germline Mutations in the p53 Homolog p63 Are the Cause of EEC Syndrome. Cell 1999; 99: 143–153.

    PubMed  Google Scholar 

  110. Ianakiev P, Kilpatrick MW, Toudjarska I, Basel D, Beighton P, Tsipouras P. Split-Hand/Split-Foot Malformation Is Caused by Mutations in the p63 Gene on 3q27. Am J Hum Genet 2000; 67(1): 59–66.

    PubMed  Google Scholar 

  111. Stirewalt DL, Clurman B, Appelbaum FR, Willman CL, Radich JP. p73 mutations and expression in adult de novo acute myelogenous leukemia. Leukemia 1999; 13(7): 985–990.

    PubMed  Google Scholar 

  112. Park B, Lee S, Kim J, et al. Frequent alteration of p63 Expression in Human Primary Bladder Carcinomas. Cancer Research 2000; 60: 3370–3374.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irwin, M.S., Kaelin, W.G. Role of the newer p53 family proteins in malignancy. Apoptosis 6, 17–29 (2001). https://doi.org/10.1023/A:1009663809458

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009663809458

Navigation