Foundations of Science

, Volume 2, Issue 1, pp 123–135 | Cite as

Gödel's Incompleteness Theorems and Computer Science

  • Roman Murawski
Article

Abstract

In the paper some applications of Gödel's incompleteness theorems to discussions of problems of computer science are presented. In particular the problem of relations between the mind and machine (arguments by J.J.C. Smart and J.R. Lucas) is discussed. Next Gödel's opinion on this issue is studied. Finally some interpretations of Gödel's incompleteness theorems from the point of view of the information theory are presented.

Gödel's incompleteness theorems Turing machine artificial intelligence mind-body problem 

References

  1. Benacerraf, P. (1967), ‘God, the Devil, and Gödel’, The Monist, 51, 9–32.Google Scholar
  2. Bowie, G.L. (1982), ‘Lucas' Number Is Finally Up’, Journal of Philosophical Logic, 11, 279–285.CrossRefGoogle Scholar
  3. Chaitin, G. (1974), ‘Information—Theoretic Computational Complexity’, IEEE Transactions on Information Theory, IT-20, 10–15. Reprinted in: Tymoczko, T. (ed.), New Directions in the Philosophy of Mathematics. An Anthology, Boston-Basel-Stuttgart: Birkhäuser, 289–299.CrossRefGoogle Scholar
  4. Chaitin, G. (1982), Gödel's Theorem and Information, International Journal of Theoretical Physics, 21, 941–954 Reprinted in: Tymoczko, T. (ed.), New Directions in the Philosophy of Mathematics. An Anthology, Boston-Basel-Stuttgart: Birkhäuser, 300–311.CrossRefGoogle Scholar
  5. Davis, M. (ed.) (1965), The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems, and Computable Functions, Hewlett, N.Y.: Raven Press.Google Scholar
  6. Descartes R. (1637), Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les sciences. Reprinted in: Oeuvres complètes, ed. by Adam, Ch. and Tannery, P., Paris 1897–1913, second edition: Paris 1956–1957.Google Scholar
  7. Gödel, K. (1931), ‘Über formal unentscheidbare Sätze der ‘Principia Mathematica’ und verwandter Systeme.’ I, Monatshefte für Mathematik und Physik, 38, 173–198. Reprinted with English translation: ‘On Formally Undecidable Propositions of Principia Mathematica and Related Systems’, in: Gödel, K., Collected Works, vol. I, ed. by Feferman, S. et al., Oxford: Oxford University Press, New York and Clarendon Press, 144–195.CrossRefGoogle Scholar
  8. Gödel, K. (1944), ‘Russell's Mathematical Logic’, in: Schilpp, P.A. (ed.), The Philosophy of Bertrand Russell, Evanston: Northwestern University, 123–153. Reprinted in: Gödel, K., Collected Works, vol. II, ed. by Feferman, S. et al., Oxford: Oxford University Press, New York and Clarendon Press, 119–141.Google Scholar
  9. Gödel, K. (1951), ‘Some Basic Theorems on the Foundations of Mathematics and Their Implications’, first published in: Gödel, K., Collected Works, vol. III, ed. by Feferman, S. et al., Oxford: Oxford University Press, New York and Clarendon Press, 304–323.Google Scholar
  10. Good, I.J. (1967), ‘Human and Machine Logic’, British Journal for the Philosophy of Science, 18, 145–146.Google Scholar
  11. Good, I.J. (1969), ‘Gödel's Theorem is a Red Herring’, British Journal for the Philosophy of Science, 19, 357–358.Google Scholar
  12. Hilbert, D. (1926), ‘Über das Unendliche’, Mathematische Annalen, 95, 161–190. English translation: On the Infinite, in: Heijenoort, J. van (eds.) (1967), From Frege to Gödel. A Source Book in Mathematical Logic, 1879–1931, Cambridge, Mass.: Harvard University Press, 367–392.CrossRefGoogle Scholar
  13. Hofstadter, D.R. (1979), Gödel, Escher, Bach: An Eternal Golden Briad, New York; Basic Books.Google Scholar
  14. Krajewski, S. (1983), ‘Philosophical Conscqucnces of Gödel's Theorems’, Dulletin of the Section of Logic, 12, 157–164.Google Scholar
  15. Krajewski, S. (1993), ‘Did Gödel Prove That we Are Not Machines?’, in: Wolkowski, Z.W. (ed.), First International Symposium on Gödel's Theorems, Singapore-New Jersey-Lon-don-Hong Kong: World Scientific, 39–49.Google Scholar
  16. Kreisel, G. (1980), ‘Kurt Gödel 1906–1978’, Biographical Memoires of Fellows of the Royal Society, 26, 149–224.Google Scholar
  17. La Mettrie, J.O. de (1748), L'homme-machine. Critical edition, ed. by A. Vartanian, Paris 1960.Google Scholar
  18. Lucas, J.R. (1961), ‘Minds, Machines and Gödel’, Philosophy, 36, 112–127. Reprinted in: Anderson, A.R. (ed.), (1964), Minds and Machines, Prentice Hall: Englewood Cliffs.CrossRefGoogle Scholar
  19. Lucas, J.R. (1967), ‘Human and Machine Logic. A Rejoinder’, British Journal for the Philosophy of Science, 19, 155–156.Google Scholar
  20. Lucas, J.R. (1968), ‘Satan Stultified: A Rejoinder to Paul Benacerraf’, The Monist, 52, 145–158.Google Scholar
  21. Mendelson, E. (1964), Introduction to Mathematical Logic, Princeton-Toronto-New York-London: D. Van Nostrand Company, Inc.Google Scholar
  22. Murawski, R. (199?), Recursive Functions and Metamathematics, to appear.Google Scholar
  23. Nagel, E. and Newman, J.R. (1958), Gödel's Proof, London: Routledge & Kegan Paul, Ltd.Google Scholar
  24. Penrose, R. (1989), The Emperor's New Mind. Concerning Computers, Minds, and the Laws of Physics, Oxford: Oxford University Press.Google Scholar
  25. Penrose, R. (1994), Shadows of the Mind: a Search for the Missing Science of Consciousness, Oxford-New York-Melbourne: Oxford University Press.Google Scholar
  26. Putnam, H. (1975), ‘What Is Mathematical Truth?’, in: Putnam, H. Mathematics, Matter and Method. Philosophical Papers, vol. I, Cambridge-London-New York-Melbourne: Cambridge University Press, 60–78. Reprinted in: Tymoczko, T. (ed.), New Directions in the Philosophy of Mathematics. An Anthology, Boston-Basel-Stuttgart: Birkhäuser, 50–65.Google Scholar
  27. Rucker, R. (1982), Infinity and the Mind, Boston-Basel-Stuttgart: Birkhäuser.Google Scholar
  28. Smart, J.J.C. (1961), ‘Gödel's Theorem, Church's Thesis, and Mcchanism’, Synthese, 13, 105–110.CrossRefGoogle Scholar
  29. Smoryński, C. (1977), ‘The Incompleteness Theorems’, in: Barwise, J. (ed.), Handbook of Mathematical Logic, Amsterdam, North-Holland Publ. Comp, 821–865.Google Scholar
  30. Turing A. (1950), ‘Computing Machinery and Intelligence’, Mind, 59, 433–460. Reprinted in:, Anderson, A.R. (ed.), (1964), Minds and Machines, Prentice Hall: Englewood Cliffs, 4–42.Google Scholar
  31. Wang Hao, (1974), From Mathematics to Philosophy, London: Routledge and Kegan Paul.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Roman Murawski
    • 1
  1. 1.Faculty of Mathematics and Computer SciencesAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations