Molecular Breeding

, Volume 5, Issue 1, pp 21–31 | Cite as

Developing SSCP markers in two Pinus species

  • C. Plomion
  • P. Hurme
  • J-M. Frigerio
  • M. Ridolfi
  • D. Pot
  • C. Pionneau
  • C. Avila
  • F. Gallardo
  • H. David
  • G. Neutelings
  • M. Campbell
  • F.M. Canovas
  • O. Savolainen
  • C. Bodénès
  • A. Kremer


This study demonstrates the feasibility of generating sequence- based markers in Pinus species, from data available in electronic databases. Nucleotide sequences from 23 partially or fully characterized cDNAs or genomic sequences of pines were used to design PCR primers for amplifying targeted fragments of genomic DNA from Maritime and Scots pine. Various template DNA and MgCl2 concentrations, annealing temperatures, and buffer compositions were used to optimize the PCR amplifications. The polymorphism of 16 sequences was then investigated in a tree-generation inbred pedigree of Maritime pine and in a two-generation pedigree of Scots pine, using single-stranded DNA conformation polymorphism (SSCP) on polymerase chain reaction (PCR) products. The level of polymorphism was shown to be independent of (1) fragment size, (2) the presence or absence of introns in the amplified product and (3) temperature during electrophoresis. Mendelian segregation was tested for 5 SSCP markers in each species. Chromosomal locations of five genes were identified by linkage analysis with previously mapped markers in a genetic map of Maritime pine. The use of SSCP is recommended for constructing a transcriptional map for comparative mapping studies among pines and to provide useful ‘candidate genes’ for characterizing quantitative trait loci.

SSCP Pinus pinaster Pinus sylvestris linkage map 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja MR, Devey ME, Groover AT, Jermstad KD, Neale DB: Mapped DNA probes from loblolly pine can be used for restriction fragment length polymorphism mapping in other conifers. Theor Appl Genet 88: 279–282 (1994).Google Scholar
  2. 2.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 215: 403–410 (1990).Google Scholar
  3. 3.
    Bassam BJ, Caetano-Anolles G, Gresshoff PM: Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196: 80–83 (1991).Google Scholar
  4. 4.
    Bodénès C, Laigret F, Kremer A: Inheritance and molecular variations of PCR-SSCP fragment in Pedunculate oak (Quercus robur L.). Theor Appl Genet 93: 348–354 (1996).Google Scholar
  5. 5.
    Borsa P, Coustau C: Single-stranded DNA conformation polymorphism at the Rdl locus in Hypothenemus hampei (Coleoptera: Scolytidae). Heredity 76: 124–129 (1996).Google Scholar
  6. 6.
    Brown MAD, Oldenburg M, Lyamichev V, Heisler L, Grotelueschen J, Lyamichev N, Kozyavkin S, Fors L, Dahlberg J, Smith L, Olive DM: Mutation detection by cleavase fragment length polymorphism analysis. Focus 18: 2–5 (1996).Google Scholar
  7. 7.
    Chang S, Puryear JD, Dias MADL, Funkhouser EA, Newton RJ, Cairney J: Gene expression under water deficit in loblolly pine (Pinus taeda): isolation and characterization of cDNA clones. Physiol Plant 97: 139–148 (1996).Google Scholar
  8. 8.
    Devey ME, Bell JC, Smith DN, Neale DB, Moran GF: A genetic map for Pinus radiata based on RFLP, RAPD and microsatellite markers. Theor Appl Genet 92: 673–679 (1996).Google Scholar
  9. 9.
    Devey ME, Fiddler TA, Liu BH, Knapp SJ, Neale BD: An RFLP linkage map for loblolly pine based on a threegeneration outbred pedigree. Theor Appl Genet 88: 273–278 (1994).Google Scholar
  10. 10.
    Dhillon SS: DNA in tree species. In: Bonga JM, Durzan DJ (eds) Cell and Tissue Culture in Forestry. vol. 1, pp. 298–313. Martinus Nijhoff (Kluwer Academic Publishers), Dordrecht, Netherlands (1987).Google Scholar
  11. 11.
    Domon JM, Dumas B, Laine E, Meyer Y, David A, David H: Three glycosylated polypeptides secreted by several embryogenic cell cultures of Pine show highly specific serological affinity to antibodies directed against the wheat germin apoprotein monomer. Plant Physiol 108: 141–148 (1995).Google Scholar
  12. 12.
    Doyle JJ, Doyle JL: Isolation of DNA from fresh plant tissue. Focus 12: 13–15 (1987).Google Scholar
  13. 13.
    Echt C, Nelson CD: Linkage mapping and genome length in eastern white pine (Pinus strobus L.) Theor Appl Genet 94: 1031–1037 (1997).Google Scholar
  14. 14.
    Farjon A: Pines: Drawing and Description of the Genus Pinus. Brill, Leiden, Netherlands, 220 pp. (1984).Google Scholar
  15. 15.
    Fliegmann J, Schroder G, Schanz S, Britsch L, Schroder J: Molecular analysis of chalcone and dihydropinosylvin synthase from Scots pine (Pinus sylvestris), and differential regulation of these and related enzyme activities in stressed plants. Plant Mol Biol 18: 489–503 (1992).Google Scholar
  16. 16.
    Fukuoka S, Inoue T, Miyo A, Monna L, Zhong HS, Sasaki T, Minobe Y: Mapping of sequence-tagged sites in rice by singlestrand conformation polymorphism. DNA Res 1: 271–277 (1994).Google Scholar
  17. 17.
    Futuyama DJ: Evolutionary Biology, 2nd edn. Sinauer Associates, Sunderland, MA (1986).Google Scholar
  18. 18.
    Glavac D, Dean M: Optimization of the single-strand conformation polymorphism (SSCP) technique for detection of point mutations. Human Mut 2: 404–414 (1993).Google Scholar
  19. 19.
    Hayashi K, Yandell DW: How sensitive is PCR-SSCP? Human Mut 2: 338–346 (1993).Google Scholar
  20. 20.
    Karpinski S, Wingsle G, Olsson O, Hällgren J-E: Characterization of cDNAs encoding cuZn-superoxide dismutase in Scots pine. Plant Mol Biol 18: 545–555 (1992).Google Scholar
  21. 21.
    Kaya Z, Neale DB: Linkage mapping in Turkish red pine (Pinus brutia Ten.) using random amplified polymorphic DNA (RAPD) genetic markers. Silvae Genet 44: 110–116 (1995).Google Scholar
  22. 22.
    Kinlaw CS, Gerttula S, Alosi MC: The non specific lipid transfer protein gene family of loblolly pine is complex. Plant Mol Biol 26: 1213–1216 (1995).Google Scholar
  23. 23.
    Kinlaw CS, Harry DE, Sederoff RR: Isolation and characterization of alcohol dehydrogenase cDNAs from Pinus radiata. Can J For Res 20: 1343–1350 (1990).Google Scholar
  24. 24.
    Kriebel, H B: DNA sequence components of the Pinus strobus nuclear genome Can J For Res 15: 1–5 (1985).Google Scholar
  25. 25.
    Kubisiak TL, Nelson CD, Nance WL, Stine M: RAPD linkage mapping in a longleaf pine _ slash pine F1 family. Theor Appl Genet 90: 1110–1127 (1995).Google Scholar
  26. 26.
    Lagziel A, Lipkin E, Soller M: Association between SSCP haplotypes at the bovine growth hormone gene and milk protein percentage. Genetics 142: 945–951 (1996).Google Scholar
  27. 27.
    Li L, Popko JL, Zhang XH, Osakabe K, Tsai CJ, Joshi CP, Chiang VL: A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine. Proc Natl Acad Sci USA 94: 5461–5466 (1997).Google Scholar
  28. 28.
    Liu Q, Sommer SS: Parameters affecting the sensitivities of dideoxy fingerprinting and SSCP. PCR Meth Appl 4: 97–108 (1994).Google Scholar
  29. 29.
    Loopstra CA, Sederoff R: Xylem-specific gene expression in loblolly pine. Plant Mol Biol 27: 277–291 (1995).Google Scholar
  30. 30.
    McKay JJ: A mutation in lignin biosynthesis in loblolly pine: genetic, molecular and biochemical analyses. Ph. D. thesis, North Carolina State University, Raleigh, NC, 144 pp. (1996).Google Scholar
  31. 31.
    Membré N, Berna A, Neutelings G, David A, David H, Staiger D, Sáez Vásquez J, Raynal M, Delseny M, Bernier F: cDNA sequence, genomic organization and differential expression of three Arabidopsis genes for germin/oxalate oxidase-like proteins. Plant Mol Biol 35: 459–469 (1997).Google Scholar
  32. 32.
    Meyers RM, Maniatis T, Lerman LS: Detection and localization of single base changes by denaturing gradient gel electrophoresis. Meth Enzymol 155: 501–527 (1986).Google Scholar
  33. 33.
    Mullen RT, Gifford DJ: Regulation of two loblolly pine (Pinus taeda L.) isocitrate lyase genes in megagametophytes of mature and stratified seeds and during postgerminative growth. Plant Mol Biol 33: 593–604 (1997).Google Scholar
  34. 34.
    Mutebi JP, Black WC, Bosio CF, Sweeney WP, Craig GB: Linkage map for the Asian tiger mosquito [Aedes (Stegomyia) albopictus] based on SSCP analysis of RAPD markers. J Hered 88: 489–494 (1997).Google Scholar
  35. 35.
    Neale DB, Tauer CG, Gorzo DM, Jermstad KD: Restriction fragment length polymorphism mapping of loblolly pine: methods, applications and limitations. In: Proceedings of the 20th Southern Forest Tree Improvement Conference, Charleston, SC, pp. 363–372 (1989).Google Scholar
  36. 36.
    Neininger A, Seith B, Hoch B, Mohr H: Gene expression of nitrite reductase in Scots pine (Pinus sylvestris L.) as affected by light and nitrate. Plant Mol Biol 25: 449–457 (1994).Google Scholar
  37. 37.
    Nelson CD, Kubisiak TL, Stine M, Nance WL: A genetic linkage map of longleaf pine (Pinus palustris Mill.) based on ramdom amplified polymorphicd DNAs. J Hered 85: 433–439 (1994).Google Scholar
  38. 38.
    Nelson CD, Nance WL, Doudrick RL: A partial genetic linkage map of Slash pine (Pinus elliotti Englem var. elliottii) based on random amplified polymorphic DNA's. Theor Appl Genet 8: 145–151 (1993).Google Scholar
  39. 39.
    Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T: Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms Proc Natl Acad Sci USA 86: 2766–2770 (1989).Google Scholar
  40. 40.
    Orita M, Suzuki Y, Sekya T, Hayashi K: Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction Genomics 5: 874–879 (1989).Google Scholar
  41. 41.
    Plomion C, Bahrman N, Durel C-E, O'Malley DM: Genomic mapping in Pinus pinaster (Maritime pine) using RAPD and protein markers. Heredity 74: 661–668 (1995).Google Scholar
  42. 42.
    Plomion C, Costa P, Bahrman N: Genetic analysis of needle protein in Maritime pine. 1. Mapping dominant and codominant protein markers assayed on diploid tissue, in a haploid-based genetic map. Silvae Genet 46: 161–165 (1997).Google Scholar
  43. 43.
    Riesner DG, Steger U, Wiese M, Wulfert M, Heibey M, Henco K: Temperature-gradient electrophoresis for the detection of polymorphic DNA and for quantitative polymerase chain reaction. Electrophoresis 13: 632–636 (1992).Google Scholar
  44. 44.
    Rychlik W, Spencer WJ, Rhoads RE: Optimization of the annealing temperature for DNA amplification in vitro. Nucl Acids Res 18: 6409–6412 (1990).Google Scholar
  45. 45.
    Sheffield VC, Beck, JS, Kwitek AE, Sandstrom DW, Stone EM: The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics 16: 325–332 (1993).Google Scholar
  46. 46.
    Slabaugh MB, Huestis GM, Leonard J, Holloway JL, Rosato C, Hongtrakul V, Martini N, Toepfer R, Voetz M, Schell J, Knapp SJ: Sequence-based genetic markers for genes and gene families: single-strand conformation polymorphisms for the fatty acid synthesis genes of Cuphea. Theor Appl Genet 94: 400–408 (1997).Google Scholar
  47. 47.
    Spano AL, He Z, Timko MP: NADPH: protochlorophyllide oxidoreductases in white pine (Pinus strobus) and loblolly pine (P. taeda). Mol Gen Genet 236: 86–95 (1992).Google Scholar
  48. 48.
    Tragoonrung S, Kanizin V, Hayes PM, Blake TK: Sequence tagged-site-facilitated PCR for barley genome mapping. Theor Appl Genet 84: 1002–1008 (1992).Google Scholar
  49. 49.
    Wakamiya I, Newton RJ, Johnston JS, Price HJ: Genome size and environmental factors in the genus Pinus. Am J Bot 80: 1235–1241 (1993).Google Scholar
  50. 50.
    Wetten R, Sederoff R: Phenylalanine ammonia-lyase from loblolly pine. Plant Physiol 98: 380–386 (1992).Google Scholar
  51. 51.
    Whetten R, Sederoff R: Lignin biosynthesis. Plant Cell 7: 1001–1013 (1995).Google Scholar
  52. 52.
    Williams JGK, Kubelik AR, Livak KJ, Rafalski JA: DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18: 6531–6535 (1990).Google Scholar
  53. 53.
    Yazdani R, Yeh F, Rimsha J: Genomic mapping of Pinus sylvestris (L.) using random amplified polymorphic DNA markers. For Genet 2: 109–116 (1995).Google Scholar
  54. 54.
    Zhang XH, Chiang VL: Molecular cloning of 4-coumarate:coenzyme A ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood. Plant Physiol 113: 65–74 (1997).Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • C. Plomion
    • 1
  • P. Hurme
    • 2
  • J-M. Frigerio
    • 1
  • M. Ridolfi
    • 1
  • D. Pot
    • 1
  • C. Pionneau
    • 1
  • C. Avila
    • 3
  • F. Gallardo
    • 3
  • H. David
    • 4
  • G. Neutelings
    • 4
  • M. Campbell
    • 5
  • F.M. Canovas
    • 3
  • O. Savolainen
    • 2
  • C. Bodénès
    • 1
  • A. Kremer
    • 1
  1. 1.NRALaboratoire de Génétique et Amélioration des Arbres ForestiersCestasFRANCE
  2. 2.Department of BiologyUniversity of OuluOuluFinland
  3. 3.Departamento de Bioquimica y Biologia Molecular, Facultad de CienciasUniversidad de MalagaMalagaSpain
  4. 4.Laboratoire de Physiologie des Parois Végétales, UFR de BiologieUniversité des Sciences et Technologies de LilleVilleneuve d'AscqFrance
  5. 5.Department of Plant SciencesUniversity of OxfordSouth Parks Road, OxfordUK

Personalised recommendations