Journal of Heuristics

, Volume 5, Issue 4, pp 419–436 | Cite as

Best Practice Simulated Annealing for the Airline Crew Scheduling Problem

  • Thomas Emden-Weinert
  • Mark Proksch


We report about a study of a simulated annealing algorithm for the airline crew pairing problem based on a run-cutting formulation. Computational results are reported for some real-world short- to medium-haul test problems with up to 4600 flights per month. Furthermore we find that run time can be saved and solution quality can be improved by using a problem specific initial solution, by relaxing constraints “as far as possible”, by combining simulated annealing with a problem specific local improvement heuristic and by multiple independent runs.

airline crew scheduling simulated annealing pairing problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arabeyre, J.P., J. Fearnley, F.C. Steiger, and W. Teather. (1969). “The Airline Crew Scheduling Problem: A Survey,” Transport. Sci. 3, 140–163.Google Scholar
  2. Andersson, E., E. Housos, N. Kohl, and D. Wedelin. (1997). “Crew Pairing Optimization.” In G. Yu (ed.), Operations Research in the Airline Industry. Boston: Kluwer Acad. Publ., to appear.Google Scholar
  3. Aarts, E. and J. Korst. (1989). Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing. Chichester: Wiley & Sons.Google Scholar
  4. Aarts, E.H.L., J.H.M. Korst, and P.J.M. Van Laarhoven. (1997). “Simulated Annealing.” In E.H.L. Aarts and J.K. Lenstra ( eds.), Local Search in Combinatorial Optimization. Chichester: Wiley, pp. 91–120.Google Scholar
  5. Aarts E.H.L. and J.K. Lenstra (eds.). (1997). Local Search in Combinatorial Optimization, Chichester: Wiley.Google Scholar
  6. Aarts, E.H.L. and P.J.M. Van Laarhoven. (1985). “A New Polynomial Time Cooling Schedule,” Proc. Internat. Conf. on Computer Aided Design, IEEE. 206–208.Google Scholar
  7. Baker, E.K., L.D. Bodin, W.F. Finnegan, and R.J. Ponder. (1979). “Efficient Heuristic Solutions to an Airline Crew Scheduling Problem,” AIIE Trans. 11, 79–85.Google Scholar
  8. Bertossi, A.A., P. Carraresi, and G. Gallo. (1987). “On Some Matching Problems Arising in Vehicle Scheduling Models,” Networks 17, 271–281.Google Scholar
  9. Barnhart, C., E.L. Johnson, R. Anbil, and L. Hatay. (1994). “A Column Generation Technique for the Long-Haul Crew Assignment Problem.” In T.A. Ciriani and R.C. Leachman (eds.), Optimization in Industry.Wiley&Sons, Vol. 2, pp. 7–24.Google Scholar
  10. Ball, M. and A. Roberts. (1985). “A Graph Partitioning Approach to Airline Crew Scheduling,” Transport Sci. 19, 107–126.Google Scholar
  11. Černy, V. (1985). “Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm.” J. Optim. Theo. Appl. 45, 41–51.Google Scholar
  12. Caprara, A., M. Fischetti, P.L. Guida, P. Toth, and D. Vigo. (1997). “Solution of Large-Scale Railway Crew Planning Problems: The Italian Experience.” Technical Report.Google Scholar
  13. Daduna, J.R., I. Branco, and J.M.P. Paixao (eds.). (1995). '93. Springer LNEMS 430.Google Scholar
  14. Desaulniers, G., J. Desrosiers, M. Gamache, and F. Soumis. (1997). “Crew Scheduling in Air Transportation.” Technical Report G-97-26, GERAD Montréal.Google Scholar
  15. Desrosiers, J., Y. Dumas, M.M. Solomon, and F. Soumis. (1995). “Time Constrained Routing and Scheduling.” In M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser (eds.), Network Routing. Handbooks in OR & MS. Amsterdam: Elsevier, Vol. 8, pp. 35–139.Google Scholar
  16. Diestel, R. (1997). Graph Theory. Heidelberg: Springer.Google Scholar
  17. Daduna, J.R. and J.P.M. Paixao. (1995). “Vehicle Scheduling for Public Mass Transit—An Overview” In J.R. Daduna, M. Fischetti, P.L. Guida, and P. Toth (eds.). '93, Springer LNEMS 430, 76–90.Google Scholar
  18. Emden-Weinert, Th. (1999). Kombinatorische Optimierungsverfahren für die Flugplanung. PhD Thesis, Humboldt-Universität zu Berlin, to appear.Google Scholar
  19. FTLSG (1995). Explanatory note covering the joint aviation authorities flight and duty time limitations and rest requirements proposals. Flight Time Limitations Study Group (FTLSG) of the Joint Aviation Authorities Operations Committee.Google Scholar
  20. Fisher, M. (1995). “Vehicle Routing.” In B.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser. (eds.), Network Routing. Handbooks in OR & MS. Amsterdam: Elsevier, Vol. 8, pp. 1–33.Google Scholar
  21. Gendreau, M., G. Laporte, and J.-Y. Potvin. (1997). Vehicle Routing: Modern Heuristics. In E.H.L. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorial Optimization. Chichester: Wiley, pp. 311–336.Google Scholar
  22. Hoffman, K. and M. Padberg. (1993). “Solving Airline Crew Scheduling Problems by Branch-And-Cut,” Management Science 39, 657–682.Google Scholar
  23. Johnson, D.S., C.R. Aragon, L.A. McGeoch, and C. Schevon. (1989). “Optimization by Simulated Annealing: An Experimental Evaluation; Part I: Graph Partitioning,” Oper. Res. 37, 865–892.Google Scholar
  24. Koulamas, C., S. Antony, and R. Jaen. (1994). “A Survey of Simulated Annealing Applications to Operations Research Problems,” Omega Int. J. Mgmt. Sci. 22, 41–56.Google Scholar
  25. Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi. (1983). “Optimization by Simulated Annealing,” Science 220, 671–680.Google Scholar
  26. Van Laarhoven, P.J.M. and E.H.L. Aarts. (1987). Simulated Annealing: Theory and Applications. Kluwer Acad. Publ.Google Scholar
  27. Lee, F.H.A. (1995). “Parallel Simulated Annealing on a Message-Passing Multi-Computer.” Dissertation, Utah State University.Google Scholar
  28. Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. (1953). “Equation of State Calculations by Fast Computing Machines,” J. Chem. Phys. 21, 1087–1092.Google Scholar
  29. Osman, I.H. and G. Laporte. (1996). “Metaheuristics: A Bibliography,” Ann. Oper. Res. 63, 513–628.Google Scholar
  30. Papadimitriou, C.H. (1994). Computational Complexity. Reading, MA: Addison-Wesley.Google Scholar
  31. Proksch, M. (1997). Simulated Annealing und seine Anwendung auf das Crew Scheduling Problem. Diploma Thesis, Institut für Informatik, Humboldt-Universit00E4;t zu Berlin.Reeves, C.R. (ed.) (1995). Modern Heuristic Techniques for Combinatorial Problems. London: McGraw-Hill.Google Scholar
  32. Rushmeier, R.A.,K.L. Hoffman, and M. Padberg. (1995). Recent Advances in Exact Optimization of Airline Scheduling Problems. Technical Report.Google Scholar
  33. Romeo, F., and A. Sangiovanni-Vincentelli. (1991). “A Theoretical Framework for Simulated Annealing,” Algorithmica 6, 302–345.Google Scholar
  34. Suhl, L. (1995). Computer-Aided Scheduling—An Airline Perspective. Wiesbaden: Gabler Edition Wissenschaft.Google Scholar
  35. Thompson, J.M. and K.A. Dowsland. (1996). Variants of Simulated Annealing for the Examination Timetabling Problem. Ann. Oper. Res. 63, 105–128.Google Scholar
  36. Wedelin, D. (1995). An Algorithm for 0-1 Programming with an Application to Airline Crew Scheduling. In R.E. Bukard, T. Ibaraki, and M. Queyranne (eds.), Mathematics of industrial systems I, Ann. Oper. Res. 57, 283–301.Google Scholar
  37. Wren, A. and J.-M. Rousseau. (1995). Bus Driver Scheduling—An Overview, In J.R. Daduna, I. Branco, and J.M.P. Paixao (eds.), '93, Springer LNEMS 430, 173–187.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Thomas Emden-Weinert
    • 1
  • Mark Proksch
    • 1
  1. 1.Institut für InformatikHumboldt-Universität zu Berlin, December, 14th, 1998Germany

Personalised recommendations