Aquatic Geochemistry

, Volume 6, Issue 2, pp 257–274

In-situ Growth of Calcite at Devils Hole, Nevada: Comparison of Field and Laboratory Rates to a 500,000 Year Record of Near-Equilibrium Calcite Growth

  • L. Niel Plummer
  • Eurybiades Busenberg
  • Alan C. Riggs
Article

Abstract

Calcite grew continuously for 500,000 years on the submerged walls of an open fault plane (Devils Hole) in southern Nevada, U.S.A. at rates of 0.3 to 1.3 mm/ka, but ceased growing approximately 60,000 years ago, even though the fault plane remained open and was continuously submerged. The maximum initial in-situ growth rate on pre-weighed crystals of Iceland spar placed in Devils Hole (calcite saturation index, SI, is 0.16 to 0.21 at 33.7 °C) for growth periods of 0.75 to 4.5 years was 0.22 mm/ka. Calcite growth on seed crystals slowed or ceased following initial contact with Devils Hole groundwater. Growth rates measured in synthetic Ca-HCO3 solutions at 34 °C, CO2 partial pressures of 0.101, 0.0156 (similar to Devils Hole groundwater) and 0.00102 atm, and SI values of 0.2 to 1.9 were nearly independent of PCO2, decreased with decreasing saturation state, and extrapolated through the historical Devils Hole rate. The results show that calcite growth rate is highly sensitive to saturation state near equilibrium. A calcite crystal retrieved from Devils Hole, and used without further treatment of its surface, grew in synthetic Devils Hole groundwater when the saturation index was raised nearly 10-fold that of Devils Hole water, but the rate was only 1/4 that of fresh laboratory crystals that had not contacted Devils Hole water. Apparently, inhibiting processes that halted calcite growth in Devils Hole 60,000 years ago continue today.

calcite growth calcite precipitation carbonate groundwater Devils Hole near-equilibrium rates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakaki, T. and Mucci, A. (1995) A continuous and mechanistic representation of calcite reactioncontrolled kinetics in dilute solutions at 25 °C and 1 atm total pressure. Aquatic Geochem. 1, 105–130.Google Scholar
  2. Busenberg, E. and Plummer, L. N. (1986) A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite. In: F. A. Mumpton (ed.), Studies in Diagenesis. U.S.Geol.Survey Bull. 1578, 139–168.Google Scholar
  3. Chou, L., Garrels, R. M., and Wollast, R. (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem.Geol. 78, 269–282.Google Scholar
  4. Compton, R. G. and Brown, C. A. (1995) The inhibition of calcite dissolution/precipitation: 1,2-dicarboxylic acids. J.Colloid Interface Sci. 170, 586–590.Google Scholar
  5. Coplen, T. B., Winograd, I. J., Landwehr, J. M., and Riggs, A. C. (1994) 500,000-year stable carbon isotopic record from Devils Hole, Nevada. Science 263, 361–365.Google Scholar
  6. Dove, P. M. and Hochella, M. F., Jr. (1993) Calcite precipitation mechanisms and inhibition by orthophosphate: In situ observations by scanning force microscopy. Geochim.Cosmochim.Acta 57, 705–714.Google Scholar
  7. Dreybrodt, W., Buhmann, D., Michaelis, J., and Usdowski, E. (1992) Geochemically controlled calcite precipitation by CO2 outgassing: Field measurements of precipitation rates in comparison to theoretical predictions. Chem.Geol. 97, 285–294.Google Scholar
  8. Dreybrodt, W., Eisenlohr, L., Madry, B., and Ringer S. (1997) Precipitation kinetics of calcite in the system CaCO3-H2O-CO2: The conversion of CO2 by the slow process H+ + HCO3- → CO2 + H2O as a rate limiting step. Geochim.Cosmochim.Acta 61, 3897–3904.Google Scholar
  9. Eakin, T. E. (1966) A regional interbasin groundwater system in the White River area, southeastern Nevada. Water Resour.Res. 2, 251–271.Google Scholar
  10. Ford, D. C., Lundberg, J., Palmer, A. N., Palmer, M. V., Dreybrodt, W., and Schwarcz, H. P. (1993) Uranium-series dating of the draining of an aquifer: The example of Wind Cave, Black Hills, South Dakota. Geol.Soc.Amer.Bull. 105, 241–250.Google Scholar
  11. Herman, J. S. and Lorah M. M. (1988) Calcite precipitation rates in the field: Measurement and prediction for a travertine-depositing stream. Geochim.Cosmochim.Acta 52, 2347–2355.Google Scholar
  12. Inskeep, W. P. and Bloom, P. R. (1985) An evaluation of rate equations for calcite precipitation kinetics at PCO2 less than 0.01 atm and pH greater than 8. Geochim.Cosmochim.Acta 49, 2165–2180.Google Scholar
  13. Inskeep, W. P. and Bloom P. R. (1986) Kinetics of calcite precipitation in the presence of watersoluble organic ligands. Soil Sci.Soc.Am.J. 50, 1167–1172.Google Scholar
  14. Katz, J. L., Reick, M. R., Herzog, R. E., and Parsiegla, K. I. (1993) Calcite growth inhibition by iron. Langmuir 9, 1423–1430.Google Scholar
  15. Kavanagh, A. M., Rayment, T., and Price, T. J. (1990) Inhibitor effects on calcite growth at low supersaturations. J.Chem.Soc.Faraday Trans. 86, 965–972.Google Scholar
  16. Liu, Z. and Dreybrodt, W. (1997) Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H2O + CO2 = H+ + HCO3-. Geochim.Cosmochim.Acta 61, 2879–2889.Google Scholar
  17. Liu, Z., Svensson, U., Dreybrodt, W., Daoxian, Y., and Buhmann, D. (1995) Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: Field measurements and theoretical prediction of deposition rates. Geochim.Cosmochim.Acta 59, 3087–3097.Google Scholar
  18. Ludwig, K. R., Simmons, K. R., Szabo, B. J., Winograd, I. J., Landwehr, J. M., Riggs, A. C., and Hoffman, R. J. (1992) Mass-Spectrometric 230Th-234U-238U dating of the Devils Hole calcite vein. Science 258, 284–287.Google Scholar
  19. Meyer, H. J. (1984) The influence of impurities on the growth rate of calcite. J.Crystal Growth 66, 639–646.Google Scholar
  20. Mifflin, M. D. (1968) Delineation of ground-water flow systems in Nevada. Tech.Rept Ser.H-W, Hydrol.and Water Resour. Pub. No. 4, Center for Water Resources Research, Desert Research Institute, University of Nevada System, Reno, Nevada, 89 pp.Google Scholar
  21. Morse, J. W. (1983) The kinetics of calcium carbonate dissolution and precipitation. In: R. J. Reeder (ed.), Reviews in Mineralogy Vol. 11. Mineralogical Society of America, Washington DC, pp. 227–264.Google Scholar
  22. Nancollas, G. H. and Reddy, M. M. (1971) The crystallization of calcium carbonate. II. Calcite growth mechanism. J.Colloid Interface Sci. 37, 824–830.Google Scholar
  23. Plummer, L. N., Wigley, T. M. L., and Parkhurst, D. L. (1978) The kinetics of calcite dissolution in CO2-water systems at 5 to 60 °C and 0.0 to 1.0 atm CO2. Amer.J.Sci. 278, 179–216.Google Scholar
  24. Plummer, L. N., Parkhurst, D. L., and Wigley, T. M. L. (1979) Critical review of the kinetics of calcite dissolution and precipitation. In: E. A. Jenne (ed.), Chemical Modeling in Aqueous Systems. Amer.Chem.Soc.Symp.Series 93, 537–573.Google Scholar
  25. Plummer, L. N. and Busenberg, E. (1982) The solubilities of calcite, aragonite, and vaterite in CO2-H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim.Cosmochim.Acta 46, 1011–1040.Google Scholar
  26. Plummer, L. N., Prestemon, E. C., and Parkhurst, D. L. (1994) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH, Version 2.0. U.S. Geological Survey Water-Resources Investigations Report 94–4169, 130 pp.Google Scholar
  27. Plummer, L. N. and Busenberg, E. (1999) Data on the crystal growth of calcite from calcium bicarbonate solutions at 34 °C and CO2 partial pressures of 0.101, 0.0156, and 0.00102 atmospheres. U.S.Geological Survey Open-File Report 99–247, 13 pp.Google Scholar
  28. Reddy, M. M., Plummer, L. N., and Busenberg, E. (1981) Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25 °C: A test of a calcite dissolution model. Geochim.Cosmochim.Acta 45, 1281–1289.Google Scholar
  29. Riggs, A. C. (1991) Geohydrologic evidence for the development of Devils Hole, southern Nevada as an aquatic environment. In: E. P. Pister (ed.), Proc.Desert Fishes Council, Vols. XX & XXI, pp. 47–48.Google Scholar
  30. Riggs, A. C., Carr, W. J., Kolesar, P. T., and Hoffman, R. J. (1994) Tectonic speleogenesis of Devils Hole, Nevada, and implications for hydrogeology and the development of long, continuous paleoenvironmental records. Quaternary Res. 42, 241–254.Google Scholar
  31. Svensson, U. and Dreybrodt, W. (1992) Dissolution kinetics of natural calcite in CO2-water systems approaching calcite equilibrium. Chem.Geol. 100, 129–145.Google Scholar
  32. Szabo, B. J., Kolesar, P. T., Riggs, A. C., Winograd, I. J., and Ludwig K. R. (1994) Paleoclimatic inferences from a 120,000-yr calcite record of water-table fluctuation in Browns Room of Devils Hole, Nevada. Quaternary Res. 41, 59–69.Google Scholar
  33. Takasaki, S., Parsiegla, K. I., and Katz, J. L. (1994) Calcite growth and the inhibiting effect of iron(III). Chem.Geol. 143, 261–268.Google Scholar
  34. Thomas, J. M., Welch, A. H., and Dettinger, M. D. (1996) Geochemistry and isotope hydrology of representative aquifers in the Great Basin region of Nevada, Utah, and Adjacent States. U.S.Geological Survey Prof.Paper 1409-C, 100 pp.Google Scholar
  35. Thomas, M. M., Clouse, J. A., and Longo, J. M. (1993) Adsorption of organic compounds on carbonate minerals 3. Influence on dissolution rates. Chem.Geol. 109, 227–237.Google Scholar
  36. Van Cappellen, P., Charlet, L., Stumm, W., and Wersin, P. (1993) A surface complexation model of the carbonate mineral-aqueous solution interface. Geochim.Cosmochim.Acta 57, 3505–3518.Google Scholar
  37. Winograd, I. J. and Thordarson, W. (1975) Hydrogeologic and hydrochemical framework, southcentral Great Basin, Nevada-California, with special reference to the Nevada test site. U.S.Geological Survey Prof.Paper 712-C, 126 pp.Google Scholar
  38. Winograd, I. J. and Pearson, F. J., Jr. (1976) Major carbon 14 anomaly in a regional carbonate aquifer: Possible evidence for megascale channeling, South Central Great Basin. Water Resour.Res. 12, 1125–1143.Google Scholar
  39. Winograd, I. J., Szabo, B. J., Coplen, T. B., and Riggs, A. C. (1988) A 250,000-year climatic record from Great Basin vein calcite: Implications for Milankovitch theory. Science 242, 1275–1280.Google Scholar
  40. Winograd, I. J., Coplen, T. B., Landwehr, J. M., Riggs, A. C., Ludwig, K. R., Szabo, B. J., Kolesar, P. T., and Revesz, K. M. (1992) Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science 258, 255–260.Google Scholar
  41. Winograd, I. J., Landwehr, J. M., Ludwig, K. R., Coplen, T. B., and Riggs, A. C. (1997) Duration and structure of the past four interglaciations. Quaternary Res. 48, 141–154.Google Scholar
  42. Wollast., R. (1990) Rate and mechanism of dissolution of carbonates in the system CaCO3-MgCO3. In: W. Stumm (ed.), Aquatic Chemical Kinetics, Reaction Rates of Processes in Natural Waters. Wiley Interscience, New York, pp. 431–445.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • L. Niel Plummer
  • Eurybiades Busenberg
  • Alan C. Riggs

There are no affiliations available

Personalised recommendations