Aquatic Geochemistry

, Volume 4, Issue 2, pp 253–272 | Cite as

Redox Processes in Groundwater Impacted by Landfill Leachate

  • Leif Basberg
  • David Banks
  • Ola M. Sæther


Groundwater downgradient from Trandum municipallandfill was investigated in summer 1996, with a viewto assessing the distribution of redox-sensitivespecies. The water table at Trandum is 10–26 metersbelow the surface. Monitoring well filters have beeninstalled at depths of up to 15 m below water table,covering an area of 400 m by 200 m. Groundwaterinfluenced by the landfill seems to be confined tothis area. Pristine groundwater has a chemicalsignature indicative of calcite and pyrite weathering.Groundwater influenced by leachate from the landfillexhibits an excess of alkalinity relative to calcium,which is likely to be derived from degradation oforganic matter in the landfill. Groundwaterimmediately below and downstream of the landfillcontains elevated concentrations of Fe and Mn, largelymobilized under reducing conditions from the aquifermatrix and reflected in depleted HNO3-extractable Feand Mn in sediment samples from the same area.Groundwater samples allow the tentative identificationof redox zones based on oxidized and reduced forms ofFe, Mn, N and S. A methanogenic zone is notobserved.

Inorganic tracers dilution factor leachate attenuation redox zones groundwater 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baedecker, M. J. and Back, W. (1979) Hydrogeological processes and chemical reactions at a landfill. Ground Water 17, 429-437.Google Scholar
  2. Barcelona, M. J. and Holm, T. R. (1991) Oxidation-reduction capacities of aquifers solids. Environmental Science and Technology 25, 1565-1572.Google Scholar
  3. Berner, R. A. (1981) A new geochemical classification of sedimentary environments. Journal of Sedimentary Petrology 51, 359-365.Google Scholar
  4. Bjerg, P. L. and Christensen, T. H. (1993) A field experiment on cation exchange-affected multicomponent solute transport in a sandy aquifer. Journal of Contaminant Hydrology 12, 269-290.Google Scholar
  5. Bjerg, P. L., Rugge, K., Pedersen, J. K. and Christensen, T. H. (1995) Distribution of redox-sensitive groundwater quality parameters downgradient of a landfill (Grinsted, Denmark). Environmental Science and Technology 29, 1387-1394.Google Scholar
  6. Champ, D. R., Gulens, J. and Jackson, R. E. (1979) Oxidation-reduction sequences in ground water flow systems. Canadian Journal of Earth Science 16, 12-23.Google Scholar
  7. Chapelle, F. H. and Lovley, D. R. (1992) Competitive exclusion of sulfate reduction by Fe(III)-reducing bacteria: A mechanism for producing discrete zones of high-iron ground water. Ground Water 30, 29-36.Google Scholar
  8. Christensen, T. H., Kjeldsen, P., Albrechtsen, H. J., Heron, G., Nielsen, P. H., Bjerg, P. L. and Holm, P. E. (1994) Attenuation of landfill leachate pollutants in aquifers. Critical Reviews in Environmental Science and Technology 24, 119-202.Google Scholar
  9. French, H. K., Roseth, R. and Englund, J. O. (1995) Rensekapasitet i jord, Fagrapport: Avisingskjemikalier; Transport og nedbrytning i jord. Oslo hovedflyplass AS/Forskningsparken i Ås, Norway, 30 pp.Google Scholar
  10. Kjeldsen, P. (1993) Groundwater pollution source characterization of an old landfill. Journal of Hydrology 142, 349-371.Google Scholar
  11. Jørgensen, P. and Østmo, S. R. (1990) Hydrogeology in the Romerike area, Southern Norway. Norges Geologiske Undersøkelse Bulletin 418, pp. 19-26.Google Scholar
  12. Jørgensen, P., Stuanes, A. O. and Østmo, S. R. (1991) Aqueous geochemistry of the Romerike area, Southern Norway. Norges Geologiske Undersøkelse Bulletin 420, pp. 57-67.Google Scholar
  13. Langguth, H. R. and Voigt, R. (1980) Hydrogeologische Methoden, Springer Verlag, Berlin, 486 p.Google Scholar
  14. Lyngkilde, J. and Christensen, T. H. (1992) Redox zones of a landfill leachate pollution plume (Vejen, Denmark). Journal of Contaminant Hydrology 10, 273-289.Google Scholar
  15. Longva, O. and Østmo, S. R. (1986) Kvatergeologisk kart, Ullensaker 1915. Scale 1: 50000. Norges Geologiske Undersøkelse.Google Scholar
  16. Longva O. (1987) Ullensaker 1915 II Beskrivelse til kvartærgeologisk kart M 1: 50000. Norges geologiske undersøkelse, Skrifter 76. Trondheim, Norway, 39 p.Google Scholar
  17. Misund, A. and Sæther, O. M. (1991) Undersøkelse av forurenset grunn og grunnvann ved Trandum militærleir, Norges Geologiske Undersøkelse Rapport 91.228, 137 p.Google Scholar
  18. Parkhurst, D. L. (1995) User's guide to phreeqc - a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. U.S. Geological Survey, Water-Resources Investigations Report 95-4227, Lakewood.Google Scholar
  19. Postma D. and Jakobsen R. (1996) Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochimica et Cosmochimica Acta 60(17), 3169-3175.Google Scholar
  20. Stumm, W. and Morgan, J. J. (1996) Aquatic Chemistry - Chemical Equilibria and Rates in Natural Waters, 3rd ed., J. Wiley & Sons, 1022 p.Google Scholar
  21. Sæther O. M., Misund A., Ødegård M., Andreasen, B. TH. and Voss A. (1992) Groundwater contamination at Trandum landfill, Southeastern Norway. Norges Geologiske Undersøkelse Bulletin 422, pp. 83-95.Google Scholar
  22. Tuttle, K. J., Østmo, S. R., Andersen, B. G. (1996) Quantitative study of the distributary braidplain of the preboreal ice-contact Gardermoen delta, Southeastern Norway. Proceedings to The Jens-Olaf Englund Seminar, Gardermoen, Norway. pp. 156-180.Google Scholar
  23. Tvedten, S., Brunstad, H. and Aasland, T. (1995) Tiltaksundersøkelser for Trandum militære fyllplass (FBT lok. 0235 004), Ullensaker kommune-hovedrapport, Asplan Viak AS, Kongsberg, Norway, 42 pp.Google Scholar
  24. von Gunten, U. and Zobrist, J. (1993) Biochemical changes in groundwater-infiltration system: Column studies. Geochimica et Cosmochimica Acta 57, 3895-3906.Google Scholar
  25. Williams, G. M., Ross, C. A. M., Stuart, A., Hitchman, S. P and Alexander, L. S. (1984) Controls on contaminant migration at the Villa Farm Lagoons. Quarterly Journal of Engineering Geology 17, 39-55.Google Scholar
  26. Ødegård, M. and Andreassen, B. T. (1987) Methods for water analysis at the Geological Survey of Norway. In “Geomedical consequences of chemical composition of freshwater”, Norwegian Academy of Science and Letters, pp 133-150.Google Scholar
  27. Ødegård, M. (1997) Chemical analysis of rocks and soils, In Sæther, O. M. and de Caritat, P. (eds), Geochemical Processes, Weathering, and Groundwater Recharge in Catchments, A.A. Balkema, 416 pp.Google Scholar
  28. Østmo, S. R. (1976) Hydrogeologisk kart over Øvre Romerike. Scale 1: 20000. Norges Geologiske Undersøkelse.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Leif Basberg
    • 1
  • David Banks
    • 2
  • Ola M. Sæther
    • 2
  1. 1.Department of Hydrodynamics and Water ResourcesTechnical University of DenmarkLyngbyDenmark
  2. 2.Geological survey of NorwayTrondheimNorway

Personalised recommendations