Advertisement

Molecular Breeding

, Volume 5, Issue 2, pp 131–141 | Cite as

Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C

  • Jun Cao
  • Juliet D. Tang
  • Nicolai Strizhov
  • Anthony M. Shelton
  • Elizabeth D. Earle
Article

Abstract

A synthetic Bacillus thuringiensis (Bt) cry1C gene was introduced into broccoli (Brassica oleracea ssp. italica) by Agrobacterium-mediated transformation. Twenty-one Cry1C transgenic plants were regenerated from 400 hypocotyl and petiole explants. Variable amounts of stable steady- state cry1C mRNA accumulated in different transgenic plants. Cry1C protein (up to 0.4% of total soluble protein) was produced in correlation with the cry1C mRNA levels. Leaf section and whole-plant bioassays were done using diamondback moth (DBM) larvae from lines susceptible to Bt or resistant to Cry1A or Cry1C proteins (Cry1AR or Cry1CR, respectively). Plants with high levels of Cry1C protein caused rapid and complete mortality of all three types of DBM larvae with no defoliation. Plants with lower levels of Cry1C protein showed an increasing differential between control of susceptible of Cry1AR DBM. This study demonstrated that high production of Cry1C protein can protect transgenic broccoli not only from susceptible or Cry1AR DBM larvae but also from DBM selected for moderate levels of resistance of Cry1C. The Cry1C- transgenic broccoli were also resistant to two other lepidopteran pests of crucifers (cabbage looper and imported cabbage worm). These plants will be useful in studies of resistance management strategies involving multiple transgenes.

Bacillus thuringiensis Brassica oleracea Cry1C protein diamondback moth Pieris rapae Plutella xylostella resistance management transgenic broccoli Trichoplusia ni 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adang MJ, Brody MS, Cardineau G, Eagan N, Roush RT, Shewmaker CK, Jones A, Oakes JV, McBride KE: The reconstruction and expression of a Bacillus thuringiensis cry 3A gene in protoplasts and potato plants. Plant Mol Biol 21: 1131–1145 (1993).PubMedCrossRefGoogle Scholar
  2. 2.
    Cao J, Duan X, McElroy D, Wu R: Regeneration of herbicide resistant transgenic rice plants following microprojectilemediated transformation of suspension culture cells. Plant Cell Rep 11: 586–591 (1992).CrossRefGoogle Scholar
  3. 3.
    De Block M, De Brouwer D, Tenning P: Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol 91: 694–701 (1989).PubMedGoogle Scholar
  4. 4.
    Fox JL: Bt cotton infestations renew resistance concerns. Nature Biotechnol 14: 1070 (1996).CrossRefGoogle Scholar
  5. 5.
    Hama H, Suzuki K, and Tanaka H: Inheritance and stability of resistance to Bacillus thuringiensis formulations in the diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutidae). Appl Entomol Zool 27: 355–362 (1992).Google Scholar
  6. 6.
    Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw C, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV: Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/technology 11: 194–200 (1993).CrossRefGoogle Scholar
  7. 7.
    Krattiger AF: Insect resistance in crops: a case study of Bacillus thuringiensis (Bt) and its transfer to developing countries. International Service for the Acquisition of Agri-biotech Applications. ISAAA Briefs No 2. ISAAA, Ithaca, NY(1997).Google Scholar
  8. 8.
    Larson E, Howlett B, Jagendorf A: Artificial reductant enhancement of the lowry method for protein determination. Anal Biochem 155: 243–248 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    Liu YB, Tabashnik BE: Inheritance of resistance to the Bacillus thuringiensis toxin Cry1C in the diamondback moth. Appl Environ Microbiol 63: 2218–2223 (1997).PubMedGoogle Scholar
  10. 10.
    Liu YB, Tabashnik BE, Pusztai-Carey M: Field-evolved resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 89: 798–804 (1996).Google Scholar
  11. 11.
    McGaughey WH, Whalon ME: Managing insect resistance to Bacillus thuringiensis toxins. Science 258: 1451–1455 (1992).PubMedGoogle Scholar
  12. 12.
    Metz TD, Dixit R, Earle ED: Agrobacterium tumefaciensmediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Rep 15: 287–292 (1995).CrossRefGoogle Scholar
  13. 13.
    Metz TD, Roush RT, Tang TD, Shelton AM, Earle ED: Transgenic broccoli expressing a bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies. Mol Breed 1: 309–317 (1995).CrossRefGoogle Scholar
  14. 14.
    Moar WJ, Pusztai-Carey M, Van Faassen H, Bosch D, Frutos R, Rang C, Luo K, Adang MJ: Development of Bacillus thuringiensis Cry1C resistance by Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Appl Environ Microbiol 61: 2086–2092 (1995).PubMedGoogle Scholar
  15. 15.
    Perez J, Shelton AM: Resistance of Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis Berliner in Central America. J Econ Entomol 90: 87–93 (1997).Google Scholar
  16. 16.
    Perez CJ, Tang JD, Shelton AM: Comparison of leaf-dip and diet bioassays for monitoring Bacillus thuringiensis resistance in field populations of diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 90: 94–101 (1997).Google Scholar
  17. 17.
    Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, GreenPlate JT, Fischhoff DA: Insect resistant cotton plants. Bio/technology 8: 939–943 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    Perlak FJ, Stone TB, Muskopf YM, Petersen LJ, Parker GB, McPherson SA, Wyman J, Love S, Reed G, Biever D, Fischhoff DA: Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol 22: 313–321 (1993).PubMedCrossRefGoogle Scholar
  19. 19.
    Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA: Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88: 3324–3328 (1991).PubMedCrossRefGoogle Scholar
  20. 20.
    Roush RT: Can we slow adaptation by pests to insect transgenic crops? In: Persley G (ed) Biotechnology and Integrated Pest Management, pp. 242–263. CAB International, Wallingford, UK (1996).Google Scholar
  21. 21.
    Roush RT: Managing Resistance to Transgenic Crops. In: Carozzi N, Koziel M (eds) Advances in Insect Control: The Role of Transgenic Plants, pp. 271–294. Taylor and Francis, London (1997).Google Scholar
  22. 22.
    Roush RT: Bt-transgenic crops: just another pretty insecticide or a chance for a new start in resistance management? Pesticide Sci 51: 328–334 (1997).CrossRefGoogle Scholar
  23. 23.
    Roush RT: Managing pests and their resistance to Bacillus thuringiensis: can transgenic crops be better than sprays? Biocontrol Sci Technol 4: 501–516 (1994).CrossRefGoogle Scholar
  24. 24.
    Roush RT, Shelton AM: Assessing the odds: the emergence or resistance to Bt transgenic plants. Nature Biotechnol 15: 816–817 (1997).CrossRefGoogle Scholar
  25. 25.
    Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).Google Scholar
  26. 26.
    Shelton AM, Cooley RJ, Kroening MK, Wilsey WT, Eigenbrode SD: Comparative analysis of two rearing procedures for diamondback moth (Lepidoptera: Plutellidae). J Entomol Sci 26: 17–26 (1991).Google Scholar
  27. 27.
    Shelton AM, Robertson JL, Tang JD, Perez C, Eigenbrode SD, Preisler HK, Wilsey WT, Cooley RJ: Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. J Econ Entomol 86: 697–705 (1993).Google Scholar
  28. 28.
    Strizhov N, Keller M, Koncz-Kálmán Z, Regev A, Sneh B, Schell J, Koncz C, Zilberstein A: Mapping of the entomocidal fragment of Spodoptera-specific Bacillus thuringiensis toxin Cry1C. Mol Gen Genet 253: 11–19 (1996).PubMedCrossRefGoogle Scholar
  29. 29.
    Strizhov N, Keller M, Mathur J, Koncz-Kálmán Z, Bosch D, Prudovsky E, Schell J, Sneh B, Koncz C, Zilberstein A: A synthetic CryIC gene, encoding a Bacillus thuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc Natl Acad Sci USA 93: 15012–15017 (1996).PubMedCrossRefGoogle Scholar
  30. 30.
    Tabashnik BE, Cushing NL, Finson N, Johnson MW: Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 83: 1671–1676 (1990).Google Scholar
  31. 31.
    Tabashnik BE, Liu YB, Finson N, Masson L, Heckel DG: One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proc Natl Acad Sci USA 94: 1640–1644 (1997).PubMedCrossRefGoogle Scholar
  32. 32.
    Tabashnik BE, Malvar T, Liu YB, Finson N, Borthakur D, Shin BS, Park SH, Masson L, de Maagd RA, Bosch D: Cross-resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins. Appl Environ Microbiol 62: 2839–2844 (1996).PubMedGoogle Scholar
  33. 33.
    Tang JD, Gilboa S, Roush RT, Shelton AM: Inheritance, stability, and lack-of-fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae) from Florida. J Econ Entomol 90: 732–741 (1997).Google Scholar
  34. 34.
    Tang JD, Shelton AM, Van Rie J, De Roeck S, Moar WJ, Roush RT, Peferoen M: Toxicity of Plutella xylostella). Appl Environ Microbiol 62: 564–569 (1996).PubMedGoogle Scholar
  35. 35.
    Toriyama K, Stein JC, Nasrallah ME, Nasrallah JB: Transformation of Brassica oleracea with an S-locus gene from B. campestris changes the self-incompatibility phenotype. Theor Appl Genet 81: 769–776 (1991).CrossRefGoogle Scholar
  36. 36.
    Verwoerd TC, Dekker BM, Hoekema A: A small-scale procedure for the rapid isolation of plant RNAs. Nucl Acids Res 17: 2362 (1989).PubMedGoogle Scholar
  37. 37.
    Zhao JZ, Zhu G, Zhu ZL, Wang WZ: Resistance of diamondback moth to Bacillus thuringiensis in China. Resist Pest Managem 5: 11–12 (1993).Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Jun Cao
    • 1
  • Juliet D. Tang
    • 2
  • Nicolai Strizhov
  • Anthony M. Shelton
    • 2
  • Elizabeth D. Earle
    • 1
  1. 1.Department of Plant BreedingCornell UniversityIthacaUSA
  2. 2.Department of EntomologyCornell UniversityGenevaUSA

Personalised recommendations