Open Systems & Information Dynamics

, Volume 4, Issue 4, pp 393–405 | Cite as

Anomalous Statistics for Type-III Intermittency

  • Jakob Laugesen
  • Niklas Carlsson
  • Erik Mosekilde
  • Tassos Bountis
Article

Abstract

The statistics for the distribution of laminar phases in type-IIIintermittency is examined for the map \(x_{n + 1} = - ((1 + \mu )x_n + x_n^3 )e^{ - bx_n^2 } \). Due to a strongly nonuniform reinjectionprocess, characteristic deviations from the normal statistics are observed.There is an enhancement of relatively long laminar phases followed by anabrupt cut-off of laminar phases beyond a certain length. The paper alsoexamines the bifurcation structure of two symmetrically coupled maps, eachdisplaying a subcritical period-doubling bifurcation. The conditions forsuch a pair of coupled maps to exhibit type-II intermittency are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    P. Bergé, Y. Pomeau, and C. Vidal, Order within Chaos: Towards a Deterministic Approach to Turbulence, Wiley and Sons, New York, 1984.Google Scholar
  2. 2.
    P. Manneville and Y. Pomeau, Physica 1D, 219 (1980).Google Scholar
  3. 3.
    Y. Pomeau and P. Manneville, Comm. Math. Phys. 74, 189 (1980).Google Scholar
  4. 4.
    Y. Pomeau, J. C. Roux, A. Rossi, S. Rachelart, and C. Vidal, J. Phys. Lett. 42, L271 (1981).Google Scholar
  5. 5.
    C. Jeffries and J. Pérez, Phys. Rev. A 26, 2117 (1982).Google Scholar
  6. 6.
    W. J. Yeh and Y. H. Kao, Appl. Phys. Lett. 42, 299 (1983).Google Scholar
  7. 7.
    P. Richetti, F. Argoul, and A. Arneodo, Phys. Rev. A 34, 726 (1986).Google Scholar
  8. 8.
    E. Ringuet, C. Rozé, and G. Goueshet, Phys. Rev. E 47, 1405 (1993).Google Scholar
  9. 9.
    M. Dubois, M. A. Rubio, and P. Bergé, Phys. Rev. Lett. 51, 1446 (1983).Google Scholar
  10. 10.
    J. Sturis and E. Mosekilde, System Dynamics Review 4, 208 (1988).Google Scholar
  11. 11.
    R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Redwood City, 1989Google Scholar
  12. 12.
    C. Reick and E. Mosekilde, Phys. Rev. E 52, 1418 (1995).Google Scholar
  13. 13.
    N. Carlsson and J. Laugesen, internal report, Center for Chaos and Turbulence Studies, The Technical University of Denmark, Feb. 1996.Google Scholar
  14. 14.
    N.-H. Holstein-Rathlou and P P Leyssac, Acta Physiol. Scand. 126, 333 (1986).Google Scholar
  15. 15.
    N.-H. Holstein-Rathlou and D. J. Marsh, Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25), F1007 (1989).Google Scholar
  16. 16.
    K.-P. Yip, N.-H. Holstein-Rathlou, and D. J. Marsh, Am. J. Physiol. 261, F400 (1991).Google Scholar
  17. 17.
    N H Holstein Rathlou, Pfluegers Archiv 408, 438 (1987).Google Scholar
  18. 18.
    K. Kaneko, Physica D 34, 1 (1989).Google Scholar
  19. 19.
    K. Kaneko, Physcia D 55, 368 (1992).Google Scholar
  20. 20.
    J. Rasmussen, E. Mosekilde, and Chr. Reick, Mathematics and Computers in Simulation 40, 247 (1996).Google Scholar
  21. 21.
    G. J. de Valcárcel, E. Roldán, V. Espinosa, and R. Vilaseca, Phys. Lett. A 206, 359 (1995).Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Jakob Laugesen
    • 1
  • Niklas Carlsson
    • 1
  • Erik Mosekilde
    • 1
  • Tassos Bountis
    • 2
  1. 1.Department of PhysicsThe Technical University of DenmarkLyngbyDenmark
  2. 2.Department of MathematicsUniversity of PatrasPatrasGreece

Personalised recommendations