, Volume 4, Issue 6, pp 407–417 | Cite as

Airway epithelium and apoptosis

  • H. Jyonouchi


Recent advances revealed that airway epithelium possesses versatile functions and plays a vital role in the mucosal defense and inflammatory responses. A maintenance of airway epithelium integrity is thus important and appears to be tightly regulated by a balanced cell proliferation and apoptosis. However, homeostasis of airway epithelium is likely affected by multiple environmental pathogens, irritants (reactive oxygen species, allergens, etc.), and toxins that may lead to various lung diseases. This review briefly summarizes airway epithelium apoptosis/proliferation in physiologic and pathological conditions along with various factors influencing airway epithelium homeostasis.

airway epithelium CD95 chemokine cytokine NO p53 polycyclic aromatic hydrocarbons (PAH) reactive oxygen species (ROS). 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schittny JC, Djonov V, Fine A, Burri PH. Programmed cell death contributes to postnatal lung development. Am J Respir Cell Mol Biol 1998; 18: 786-793.Google Scholar
  2. 2.
    Polito AJ, Proud D. Epithelial cells as regulators of airway inflammation. J Allergy Clin Immunol 1998; 192: 714-718.Google Scholar
  3. 3.
    Nel AE, Diaz-Sanchez D, Ng D, Hiura T, Saxon A. Enhancement of allergic inflammation by the interaction betseen diesel exhaust particles and the immune system. J Allergy Clin Immunol 1998; 102: 539-554.Google Scholar
  4. 4.
    Sanders SP. Asthma, viruses, and nitric oxide. Proc Soci Exp Biol Med 1999; 220:123-132.Google Scholar
  5. 5.
    Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998; 281: 1312-1316.Google Scholar
  6. 6.
    Jacobson MD, Burne JK, Raff MC. Programmed cell death and bcl-2 protection in the absence of a nucleus. EMBO J 1994;13: 1899-1910.Google Scholar
  7. 7.
    Sakahira H, Enari M, Ohsawa Y, Uchiyama Y, Nagata S. Apoptotic nuclear morphological change without DNA fragmentation. Curr Biol 1999; 9: 543-546.Google Scholar
  8. 8.
    Zhang JH, Liu XS, Scherer DC, Vankaer L, Wang SD, Xu M. Resistance to DNA fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor 45. Proc Natl Acad Sci USA 1998; 95: 12480-12485.Google Scholar
  9. 9.
    Hagimoto N, Kuwano K, Miyazaki H, et al. Induction of apoptosis and pulmonary fibrosis in mice in response to ligation of Fas antigen. Am J Respir Cell Mol Biol 1997; 17: 272-278.Google Scholar
  10. 10.
    Hagimoto N, Kuwano K, Nomoto Y, Kunitake R, Hara N. Apoptosis and exression of Fas/Fas ligand mRNA in bleomycin-induced pulmonary fibrosis in mice. Am J Respir Cell Mol Biol 1997; 16: 91-101.Google Scholar
  11. 11.
    Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of Mach, a novel Mort1/FADD-interacting protease, in Fas/Apo-1-and TNF receptor-induced cell death. Cell 1996; 85: 803-815.Google Scholar
  12. 12.
    Muzio M, Ni J, Feng P, Dixit VM. IRAK (pelle) family member IRAK-2 and myD88 as proximal mediators of IL-1 signaling complex. Cell 1996; 85: 817-827, 1996.Google Scholar
  13. 13.
    Imai Y, Kimura T, Murakami A, Yajima N, Sakamaki K, Yonehara S. The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature 1999; 398: 777-785.Google Scholar
  14. 14.
    Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D. A novel protein that interacts with the deathe domain of fas/apo1 contains a sequence morif related to the death domain. J Biol Chem 1995; 270: 7795-7798.Google Scholar
  15. 15.
    Amati B, Littlewood TD, Evan GI, Land H. The c-Myc protein induces cell cycle progression and apoptosis through dimerization with Max. EMBO Journal 1993; 12: 5083-5087.Google Scholar
  16. 16.
    Hoffman K, Bucher P, Tschopp J. The CARD domain-a new apoptotic signaling motif. Treands Biochem Sci 1997; 22: 155-156.Google Scholar
  17. 17.
    Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signlas by cellular FLIP. Nature 1997; 388: 190-195.Google Scholar
  18. 18.
    Sattler M, Liang H, Nettesheim D, et al. Structure of Bclx(l)-Bak peptide complex-recognition between regulators of apoptosis. Science 1997; 275: 983-986.Google Scholar
  19. 19.
    Frisch SM, Ruoslanhti E. Integrins and anoikis. Curr Opin Cell Biol 1997; 9: 701-706.Google Scholar
  20. 20.
    Evan G, Littlewood T. A matter of life and cell death. Science 1998; 281: 1317-1322.Google Scholar
  21. 21.
    Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 281: 1305-1308.Google Scholar
  22. 22.
    Tschopp J, Martinon F, Hofmann K. Apoptosis: Silencing the death receptors. Curr Biol 1999; 9: R381-384.Google Scholar
  23. 23.
    Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, et al. Suppression of c-Myc-induced apoptosis by Ras signaling through PI(3)K and PKB. Nature 1997; 385: 544-548.Google Scholar
  24. 24.
    White E, Cipriani R, Sabbatini P, Denton A, Adenovirus E1B 19-kilodalton protein overcomes the cytotoxicity of E1A proteins. Journal of Virology 1991; 65: 2968-2978.Google Scholar
  25. 25.
    Lloyd AC, Obermüller F, Staddon S, Barth C, McMahon M, Land H. Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Develop 1997; 11: 663-677.Google Scholar
  26. 26.
    Yeh WC, Pompa JL, McCurrach ME, et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 1998; 279: 1954-1958.Google Scholar
  27. 27.
    Zhang J, Cado D, Chen A, Kabra NH. Winoto A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lackng FADD/Mort1. Nature 1998; 392: 296-300.Google Scholar
  28. 28.
    Green DR, Reed JC: Mitochondria and apoptosis. Science 1998; 281: 1309-1312.Google Scholar
  29. 29.
    Crabtree GR. Generic signlas and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell 1999; 96: 611-614.Google Scholar
  30. 30.
    Guse AH, da Silva CP, Berg I, et al. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 1999; 398: 70-73.Google Scholar
  31. 31.
    Fanelli C, Coppola S, Barone R, et al. Magnetic fields increase cell survival by inhibiting apoptosis viamodulation of Ca2+ influx. FASEB J. 1999; 13: 95-102.Google Scholar
  32. 32.
    Kaliner MA, Osguthorpe JD, Fireman P, Anon J, Georgitis J, Davis ML. Sinusitis: bench tobedside. J Allergy Clin Immunol 1997; 99: S829-847.Google Scholar
  33. 33.
    Cocks TM, Fong B, Chow JM, et al. A protective role for protease-actvated receptors in the airways. Nature 1999; 398: 156-160.Google Scholar
  34. 34.
    Jyonouchi H, Sun S, Abiru T, Chareancholvanich S, Ingbar DH. The effects of hyperoxic injury and antioxidant vitamins on death and proliferation of human small airway epithelial cells. Am J Respir Cell Mol Biol 1998; 19: 426-436.Google Scholar
  35. 35.
    O'Reilly MA, Staversky RJ, Stripp BR, Finkelstein JN. Exposure to hyperoxia induces p53 expression in mouse lung epithelium. Am J Respir Cell Mol Biol 1998; 18: 43-50.Google Scholar
  36. 36.
    Buckley S, Barsky L, Driscoll B, Weinberg K, Anderson KD, Warburton D. Apoptosis and DNA damage in type 2 alveolar epithelial cells cultured from hyperoxic rats. Am J Physiol 1998; 274: L714-720.Google Scholar
  37. 37.
    Janssen YMW, Matalon S, Mossman BT. Differential induction of c-fos, c-jun, and apoptosis inlung epithelial cells exposed to ROS and RNS. J Physiol 1997; 273: L789-796.Google Scholar
  38. 38.
    Yanagisawa K, Osada H, Masuda A, et al. Induction of apoptosis by Smad3 and down-regulation of Smad3 expression in response to TGF-β in human normal lung epithelial cells. Oncogene 1998; 17: 1743-1747.Google Scholar
  39. 39.
    Fine A, Miranda K, Farmer SR, Anderson NL. Effect of insoluble extracellular matrix molecules on Fas expression in epithelial cells. J Cell Physiol 1998; 174: 285-292.Google Scholar
  40. 40.
    Guinee D, Brambilla E, Fleming M, et al. The potential role of BAX and BCL-2 expression in diffuse alveolar damage. Am J Pathol 1997; 151: 999-1007.Google Scholar
  41. 41.
    Subauste MC, Jacoby DB, Richards SM, Proud D. Infection of a human respiratory epithelial cell linewith rhinovirus: induction of c ytokine release and modulation of susceptiblity to infection by cytokine exposure. J Clin Invest 1995; 96: 549-557.Google Scholar
  42. 42.
    Zhu Z, Tang W, Ray A, et al. Rhinovirus stimulation of interleukin-6 in vivo and in vitro: Evidence for nuclear factor kB-dependent transcriptional activation. J Clin Invest 1996; 97: 421-430.Google Scholar
  43. 43.
    Sanders SP, Siekierski ES, Porter JD, Richards SM, Proud D. Nitric oxide inhibits rhinovirus-induced cytokine production and viral replication in a human respiratory epithelial cell line. J Virol 1998; 72: 934-942.Google Scholar
  44. 44.
    Johnston SL, Rapi A, Bates PJ, Mastronarde JG, Monick MM, Hunninghake GW. Low-grade rhinovirus infection induces a prolonged release of IL-8 in pulmonary epithelium. J Immunol 1998; 160: 6172-6181.Google Scholar
  45. 45.
    Einarsson O, Geba GP, Zhu Z, Landry M, Elias JA. Interleukin-11; stimulation in vivo and in vitro by respiratory viruses and induction of airway hyperresponsiveness. J Clin Invest 1996; 97: 915-924.Google Scholar
  46. 46.
    Matsukura S, Kokubu F, Kubo H, et al. Expression of RANTES by normal airway epithelial cells after influenza virus infection. Am J Respir Cell Biol 1998; 18: 225-264.Google Scholar
  47. 47.
    Thomas LH, Friedland JS, Sharland M, Becker S. Respiratory syncytial virus-induced RANTES production from human bronchial epithelial cells is dependent on nuclear factor-κ B nuclear binding and is inhibited by adenovisu-mediated expression of inhibitor of κ Bα. J. Immunol 1998; 161: 1007-1016.Google Scholar
  48. 48.
    Termoto S, Johnson LG, Huang W, Leigh MW, Boucher RC. Effect of adenoviral vector infection on cell proliferation in cultured primary human airway epithelial cells. Human Gene Therapy 1995; 6: 1045-1053.Google Scholar
  49. 49.
    Lundberg JON, Farkas-Szallasi T, Weitzberg E, et al. High nitric oxide production in human paranasal sinuses. Nat Med 1995; 1: 370-373.Google Scholar
  50. 50.
    Lundberg JON. Airborn nitric oxide: inflammatory marker and aerocrine messenger in man. Acta Physiol Scand Supplement 1996; 633: 1-27.Google Scholar
  51. 51.
    Massaro AG, Mehta S, Lilly CM, Kobzik L, Reilly JJ, Drazen JM. Elevated nitric oxide concentrations in isolated lower airway gas of asthmatic subjects. Am J Respir Crit Care Med 1996; 153: 1510-1514.Google Scholar
  52. 52.
    Kharitonov SA, Chung KF, Evans D, O'Connor BJ, Barnes PJ. Increased exhaled nitric oxide in asthma is mainly derived from the lower respiratory tract. Am J Respir Crit Care Med 1996; 153: 1773-1780.Google Scholar
  53. 53.
    Hamid 1, Springall DR, RiverosMoreno V, et al. Induction of nitric oxide synthase in asthma. Lancet 1993; 342: 1510-1513.Google Scholar
  54. 54.
    Curran AD. The role of nitric oxide in the development of asthma. Int Arch Allergy Immunol 1996; 111: 1-4.Google Scholar
  55. 55.
    Kolb H, Kob-Bachofen V. Nitric oxide in autoimmune disease: cytotoxic or regulatory mediator? Immunol Today 1998; 19: 556-561.Google Scholar
  56. 56.
    Dimmeler S, Zeiher AM. Nitric oxide and apoptosis: another paradigm for the double-edged role of nitric oxide. Nitric Oxide 1997; 1: 275-281.Google Scholar
  57. 57.
    Zhang X, Brunner T, Carter L, et al. Unequal death in T helper cell (Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis. J Exp Med 1997; 185: 1827-1849.Google Scholar
  58. 58.
    Saleh D, Ernst P, Lim S, Barnes PJ, Giaid A. Increased formation of the potent oxidantperoxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase: effect of inhaled glucocorticoid. FASEB Journal 1998; 12: 929-937.Google Scholar
  59. 59.
    Bader T, Nettesheim P. Tumore necrosis factor-α modulates the expression of its p60 receptor andseveral cytokines in rat tracheal epithelial cells. J Immunol 1996; 157: 3089-3096.Google Scholar
  60. 60.
    Winton HL, Wan H, Cannell MB, et al. Class specific inhibiton of house dust mite proteinases which cleave cell adhesion, induce cell death and which increase the permeability of lung epithelium. Brit J Pharmacol 1998; 124: 1048-1059.Google Scholar
  61. 61.
    Lei XF, Ohkawara Y, Stäpeli MR, et al. Compartmentalizedtransgene expression of granulocyte-macrophage colony-stimulating factor (GM-CS) in mouse lung enhances allergic airways inflammation. Clin Exp Immunol 1998; 113: 157-165.Google Scholar
  62. 62.
    Hiura TS, Kempiak SJ, Nel AE. Activation of the human RANTES gene promoter in a macrophagecell line by lipopolysaccharide is dependent on stress-activated protein kinases and the IkB kinase cascade: implications for exacerbation of allergic inflammation by environmental pollutants. Clin Immunol 1999; 90: 287-301.Google Scholar
  63. 63.
    Conney AH, Chang RL, Jerina DM, Wei SJC. Studies on the metabolism of benzo[a]pyrene and dose-dependent differences in the mutagenic profile of its ultimate carcinogenic metabolite. Drug Metab Rev 1994; 26: 125-163.Google Scholar
  64. 64.
    Overby LAH, Nishio S, Weir A, Carver GT, Plopper CG, Hilpot RM. Distribution of cytochrome P4501A1 and NADPH-cytochrome P450 reductase in lungs of rabbits treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin; ultrastructural immunolocalization and in site hybridization. Mol Phamacol 1992; 41: 1039-1045.Google Scholar
  65. 65.
    Hayashi S, Okabe-Kado J, Homma Y, Kawajiri K. Expression of Ah receptor (TCDD receptor) during human monocytic differentiation. Carcinogenesis 1995; 16: 1403-1409.Google Scholar
  66. 66.
    Whitlock JP, Okino ST, Dong L, et al. Induction of cytochrome p4501A1: a model for analyzing mammalian gene transcription. FASEB J 1996; 10: 809-818.Google Scholar
  67. 67.
    Ng D, Kokot N, Hiura T, Faris M, Saxon A, Nel AE. Macrophage activation by polycyclic aromatichydrocarbons: evidence for the involvment of stress-activated protein kinases, AP-1, and anti-oxidant response element. J Immunol 1998; 161: 943-951.Google Scholar
  68. 68.
    Choi HS, Moore DD. Induction of c-fos and c-jun gene expression by phenolic antioxidants. Mol Endocrinol 1993; 7: 1596-1602.Google Scholar
  69. 69.
    Pinkus R, Winer LM, Danile V. Role of oxidants and antioxidants in the induction of AP-1, NF-kB, and glutathione S-transferase gene expression. J Biol Chem 1996; 271: 13422-13429.Google Scholar
  70. 70.
    Jyonouchi H, Sun S, Iijima K, Wang M, Hecht SS. Effect of anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrohenzo [a]pyrene on human small airway epithelial cells and the protective effects of myo-inositol. Carcinogenesis 1999; 20: 139-145.Google Scholar
  71. 71.
    Davila DR, Romeor DL, Burchiel SW. Human T cells re highly sensitive to suppression of mitogenesis by polycyclic aromatic hydrocarbons and this effect is differentially reversed by a-naphthoflavone. Toxicol Appl. Pharmacol 1996; 139: 333-341.Google Scholar
  72. 72.
    Salas VM and Burchiel SW. Apoptosis in Daudi human B cells in response to benzo[a]pyrene and benso[a]pyrene-7,8-dihyrodiol. Toxicol Appl Pharmacol 1998; 151: 367-376.Google Scholar
  73. 73.
    Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen activated protein kinase signal transduction pathways. J Mol Med 1996; 74: 589-607.Google Scholar
  74. 74.
    Malkinson AM. Primary lung tumors in mice: an experimentally manipulable model of human adenocarcinoma. Cancer Res 1992; 52: 2670S-2676S.Google Scholar
  75. 75.
    Malkinson AM, You M. The intronic structure of cancer-related genes regulates susceptibility to cancer. Mol Carcinog 1994; 10: 61-65.Google Scholar
  76. 76.
    Brambilla E.B, Brambilla C. p53 and lung cancer. Path Biol 1997; 45: 852-863.Google Scholar
  77. 77.
    Denissenko MG, Pao A, Tang M, Pfeifer GP. Preferential formation on bnzo[a]pyrene adducts atlung cncer mutational hotspots in P53. Science 1996; 274: 430-432.Google Scholar
  78. 78.
    Archuleta MM, Schieven GL, Ledbetter JA, Deanin GG, Burchiel SW. 7,12-Dimethylbenz[a]anthracene activate protein-tyrosine kinase Fyn and Lck in the HPB-ALL human T cell line and increases tyrosine phosphorylation of phospholipase C-γ1, formation of inostiol 1,4,5-triphosphate, and mobilization of intracellular calcium. Proc Natl Acad Sci USA 1993; 90: 6105-6109.Google Scholar
  79. 79.
    Mounho B, Davila DR, Burchiel SW. Characterization of intracellular calcium responses produced by polycyclic aromatic hydrocarbons in surface marker-defined human peripheral blood mononuclear cells. Toxiol Appl Phamacol 1997; 145: 323-330.Google Scholar
  80. 80.
    Mounho BJ, Burchiel SW. Alterations in human B cell calcium homeostasis by polycyclic aromatichydrocarbons: possible association with cytochrome P450 metabolism and increased protein tyrosine phophorylation. Toxicol Appl Pharmacol 1998; 149: 80-89.Google Scholar
  81. 81.
    Tannheimer SL, Barton SL, Ether SP, Burchiel SW. Carcinogenic polycyclic aromatic hydrocarbonsincrease intracellular Ca2+ and cell proliferation in primary human epithelial cells. Carcinogenesis 1997; 18: 1177-1182.Google Scholar
  82. 82.
    Preston GA, Barrett JC, Biermann JA, Murphy E. Effects of alterations in calcium homeostasis on apoptosis during neoplastic progression. Cancer Res 1997; 57: 537-542.Google Scholar
  83. 83.
    Lizard G, Gueldry S, Sordet O, et al. Glutathione is implied in the control of 7-keto-cholesterol-induced apoptosis, which is associated with radical oxygen species production. FASEB J 1998; 12: 1651-1663.Google Scholar
  84. 84.
    Bielicki JK, McCall MR, van den Berg JJ, Kuypers FA. Forte TM Copper and gas-phase cigarette smoke inhibit plasma lecithin: cholesterol cyltransferase activity by different mechanisms. J Lipid Res 1995; 36: 322-331.Google Scholar
  85. 85.
    Faruque MO, Khan MR, Rahman MM, Ahmed F. Relationship between smoking and antioxidant nutrient status. Brit J Nutr 1995; 73: 625-632.Google Scholar
  86. 86.
    Wurzel H. Yeh CC. Gairola C. Chow CK. Oxidative damage and antioxidant status in the lungs and bronchoalveolar lavage fluid of rats exposed chronically to cigarette smoke. J Biochem Toxicol 1995; 10: 11-17.Google Scholar
  87. 87.
    Menzel DB, Antioxidant vitamins and prevention of lung disease. Ann New York Acad Scien 1992; 669: 141-155.Google Scholar
  88. 88.
    Mukhtar H, Ahmad N. Mechanism of cancer chemoprevention activity of green tea. Proc Soci Exp Biol Med 1999; 220: 234-238.Google Scholar
  89. 89.
    Rice-Evans C. Implications of the mechanisms of action of tea polyphenols as antioxidants in vitro for chemoprevention in humans. Proc Soci Exp Biol Med 1999; 220: 262-266.Google Scholar
  90. 90.
    Klaunig JE, Xu Y, Han C, et al. The effect of tea consumption on oxidative stress in smokers and nonsmokers. Proc Sci Exp Biol Med 1999; 220: 249-254.Google Scholar
  91. 91.
    Wen L, Madani K, Fahrni JA, Duncan ST, Rosen GD. Dexamethasone inhibits lung epithelial cellapoptosis induced by IFNγ and Fas. Am J Physiol 1997; 273: L921-929.Google Scholar
  92. 92.
    Witschi H. Responses of the lung to toxic injury. Environ Health Perspect 1990; 85: 5-14.Google Scholar
  93. 93.
    Bruce BD, Gidea C, Bargout R, et al. Captopril inhibits apoptosis in human lung epithelial cells: a potential antifibrotic mechanism. Am J Physiol 1998; 275: L1013-1017.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • H. Jyonouchi
    • 1
  1. 1.Department of PediatricsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations