Advertisement

Lifetime Data Analysis

, Volume 3, Issue 4, pp 367–381 | Cite as

Extended Hazard Regression Model for Reliability and Survival Analysis

  • Francisco Louzada-Neto
Article

Abstract

We propose an extended hazard regression model which allows the spread parameter to be dependent on covariates. This allows a broad class of models which includes the most common hazard models, such as the proportional hazards model, the accelerated failure time model and a proportional hazards/accelerated failure time hybrid model with constant spread parameter. Simulations based on sub-classes of this model suggest that maximum likelihood performs well even when only small or moderate-size data sets are available and the censoring pattern is heavy. The methodology provides a broad framework for analysis of reliability and survival data. Two numerical examples illustrate the results.

Hazard regression models Maximum likelihood estimation Nonconstant spread parameter Simulation Weibull distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bennett, “Analysis of survival data by the proportional odds model,” Statistics in Medicine vol. 2, pp. 273–277, 1983.Google Scholar
  2. A. Ciampi and J. Etezadi-Amoli, “A general model for testing the proportional hazards and the accelerated failure time hypothesis in the analysis of censored survival data with covariates,” Communications in Statistics A vol. 14, pp. 651–667, 1985.Google Scholar
  3. D. R. Cox, “Regression models and life tables” (with discussion), Journal of the Royal Statistical Society B vol. 34, pp. 187–220, 1972.Google Scholar
  4. D. R. Cox and D.V. Hinkley, Theoretical Statistics, Chapman and Hall: London, 1974.Google Scholar
  5. D. R. Cox, and D. Oakes, Analysis of Survival Data, Chapman and Hall: London, 1984.Google Scholar
  6. M. J. Crowder, A. C. Kimber, R. L. Smith, and T. J. Sweeting, Statistical Analysis of Reliability Data, Chapman and Hall: London, 1991.Google Scholar
  7. J. Etezadi-Amoli and A. Ciampi, “Extended hazard regression for censored survival data with covariates: a spline approximation for the baseline hazard function,” Biometrics vol. 43, pp. 181–192, 1987.Google Scholar
  8. R. Fletcher, Practical Methods of Optimization, 2nd edition, Wiley: New York, 1987.Google Scholar
  9. H. Hirose, “Estimation of threshold stress in accelerated life-testing,” IEEE Transactions on Reliability vol. 42, pp. 650–657, 1993.Google Scholar
  10. J. D. Kalbfleisch and R.L. Prentice, The Statistical Analysis of Failure Time Data, Wiley: New York, 1980.Google Scholar
  11. J. F. Lawless, Statistical Models and Methods for Lifetime Data. Wiley: New York, 1982.Google Scholar
  12. J. F. Lawless, “A note on lifetime regression models,” Biometrika vol. 73, 509–512, 1986.Google Scholar
  13. N. R. Mann, R.E. Schaffer, and N.D. Singpurwalla, Methods for Statistical Analysis of Reliability and Life test Data, Wiley: New York, 1974.Google Scholar
  14. C. A. Meeter and W.Q. Meeker, “Optimum accelerated life tests with a nonconstant scale parameter,” Technometrics vol. 36, 71–83, 1994.Google Scholar
  15. R. G. Miller, Survival Analysis. Wiley: New York, 1981.Google Scholar
  16. W. Nelson, “Graphical analysis of accelerated life test data with the inverse power law,” IEEE IEEE Transactions on Reliability vol. 21, pp. 2–11, 1972.Google Scholar
  17. W. Nelson, “Fitting of fatigue curves with nonconstant standard deviation to data with runouts,” Journal of Testing and Evaluation vol. 12, pp. 69–77, 1984.Google Scholar
  18. W. Nelson, Accelerated Testing--Statistical Models, Test Plans and Data Analyses, Wiley: New York, 1990.Google Scholar
  19. R. L. Prentice, “Linear rank tests with right censored data,” Biometrika vol. 65, pp. 167–179, 1978.Google Scholar
  20. W. H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in Fortran, 2nd edition, Cambridge University Press: Cambridge, 1992.Google Scholar
  21. G. J. S. Ross, Nonlinear Estimation, Springer-Verlag: New York, 1990.Google Scholar
  22. R. A. Rigby and D. M. Stasinopoulos, “A semi-parametric additive model for variance heterogeneity,” Statistics and Computing vol. 6, pp. 57-65, 1996.Google Scholar
  23. G. A. F. Seber and C. J. Wild, Nonlinear Regression. Wiley: New York, 1989.Google Scholar
  24. P. J. Solomon, “Effect of misspecification of regression models in the analysis of survival data,” Biometrika vol. 71, pp. 291–298, 1984.Google Scholar
  25. W. N. Venables and B. D. Ripley, Modern Applied Statistics with S-Plus. Springer-Verlag: New York, 1994.Google Scholar
  26. A. H. Welsh, R. J. Carroll, and D. Ruppert, “Fitting heteroscedastic regression models,” Journal of the American Statistical Association vol. 89, pp. 100–116, 1994.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Francisco Louzada-Neto
    • 1
  1. 1.Department of StatisticsUniversity of OxfordOxfordUK

Personalised recommendations