Skip to main content
Log in

Transgenic plants expressing human glutamic acid decarboxylase (GAD65), a major autoantigen in insulin-dependent diabetes mellitus

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Parenteral and oral administration of autoantigens can induce immune tolerance in autoimmune diseases. Prophylactic therapy based on oral administration of human autoantigens is not, however, feasible when sufficient quantities of candidate autoantigens are not available. Transgenic plants that express high levels of recombinant proteins would allow large quantities of autoantigens to be produced at relatively low costs. In addition, transgenic food would provide a simple and direct method of delivering autoantigens. The production and the characterization of transgenic tobacco and carrot plants expressing human GAD65, a major autoantigen in human insulin-dependent diabetes mellitus (IDDM), is reported. Immunogold labeling and electron microscopy of transgenic tobacco tissue shows the selective targeting of human GAD65 to chloroplast tylacoids and mitochondria. In planta expressed GAD65 has a correct immunoreactivity with IDDM-associated autoantibodies and retains enzymatic activity, a finding that suggests a correct protein folding. In transgenic tobacco and carrot the expression levels of human GAD65 varies between 0.01% and 0.04% of total soluble proteins. Transgenic edible plant organs are now available to study the feasibility of inducing immune tolerance in IDDM animals by oral administration of GAD65.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arakawa T, Yu J, Chong DKX, Hough J, Engen PC, Langridge WHR: A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes. Nature Biotechnol 16: 934–938 (1998).

    Google Scholar 

  2. Atkinson MA, Maclaren NK: Islet cell autoantigens in insulindependent diabetes. J Clin Invest 92: 1608–1616 (1993).

    Google Scholar 

  3. Atkinson MA, Bowman MA, Campbell L, Darrow BL, Kaufman DL, Maclaren NK: Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Invest 94: 2125–2129 (1994).

    Google Scholar 

  4. Atkinson MA, Kaufman DL, Campbell L, Gibbs KA, Shah SC, Bu DF, Erlander MG, Tobin AJ, Maclaren NK: Response of peripheral-blood mononuclear cells to glutamate decarboxylase in insulin-dependent diabetes. Lancet 339: 458–459 (1992).

    Google Scholar 

  5. Baum G, Chen Y, Arazi T, Takatsuji H, Fromm H: A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis. J Biol Chem 268: 19610–19617 (1993).

    Google Scholar 

  6. Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, Fromm H: Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J 15: 2988–2996 (1996).

    Google Scholar 

  7. Bu D-F, Erlander MG, Hitz BC, Tillakaratne NJK, Kaufman DL, Wanger-McPherson CB, Evans GA, Tobin AJ: Two human glutamate decarboxylase, 65-kDa and 67-kDa GAD, are each recognized by a single gene. Proc Natl Acad Sci USA 89: 2115–2119 (1992).

    Google Scholar 

  8. Chen YH, Weiner HL: Dose-dependent activation and deletion of antigen-specific T cells following oral tolerance. Ann NY Acad Sci 778: 111–121 (1996).

    Google Scholar 

  9. Chong DK, Roberts W, Arakawa T, Illes K, Bagi G, Slattery CW, Langridge WH: Expression of the human milk protein beta-casein in transgenic potato plants. Transgenic Res 6: 289–296 (1997).

    Google Scholar 

  10. Deblaere R, Byeteber B, De Grese H, Deboeck F, Schell J, Van Montagu M, Leemans J: Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucl Acids Res 13: 4777–4788 (1985).

    Google Scholar 

  11. Dieryck W, Pagnier J, Poyart C, Marden MC, Gruber V, Bournat P, Baudino S, Merot B: Human haemoglobin from transgenic tobacco. Nature 386: 29–30 (1997).

    Google Scholar 

  12. Endl J, Otto H, Jung G, Dreisbusch B, Donié F, Stahl P, Elbracht R, Schmitz G, Meinl E, Hummel M, Ziegler AG, Wank R, Schendel DJ: Identification of naturally processed T cell epitopes from glutamic acid decarboxylase presented in the context of HLA-DR alleles by T lymphocytes of recent onset IDDM patients. J Clin Invest 99: 2405–2415 (1997).

    Google Scholar 

  13. Falorni A, Ackefors M, Carlberg C, Daniels T, Persson B, Robertson J, Lernmark Å: Diagnostic sensitivity of immunodominant epitopes of glutamic acid decarboxylase (GAD65) autoantibodies in childhood IDDM. Diabetologia 39: 1091–1098 (1996).

    Google Scholar 

  14. Falorni A, Örtqvist E, Persson B, Lernmark Å: Radioimmunoassays for glutamic acid decarboxylase (GAD65) and GAD65 autoantibodies using 35S or 3H recombinant human ligands. J Immunol Meth 186: 89–99 (1995).

    Google Scholar 

  15. Goddijn OJM, Pen J: Plants as bioreactors. Trends Biotechnol 13: 379–387 (1995).

    Google Scholar 

  16. Grubin CE, Daniels T, Toivola B, Landin-Olsson M, Hagopian WA, Li L, Karlsen AE, Boel E, Michelsen B, Lernmark Å: A novel radioligand binding assay to determine diagnostic accuracy of isoform-specific glutamic acid decarboxylase antibodies in childhood IDDM. Diabetologia 37: 344–350 (1994).

    Google Scholar 

  17. Hancock WW, Polanski M, Zhang J, Blogg N, Weiner HL: Suppression of insulitis in non-obese diabetic (NOD) mice by oral insulin administration is associated with selective expression of interleukin-4 and-10, transforming growth factor-beta, and prostaglandin-E. Am J Pathol 147: 1193–1199 (1995).

    Google Scholar 

  18. Horch RB, Fry JE, Hoffman NL, Eicholtz D, Rogers S, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1985).

    Google Scholar 

  19. Karlsen AE, Hagopian WA, Grubin CE, Dube S, Disteche CM, Adler DA, Bärmeier H, Mathewes S, Grant FJ, Foster D, Lernmark Å: Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10. Proc Natl Acad Sci USA 88: 8337–8341 (1991).

    Google Scholar 

  20. Kaufman DL, Clare-Salzler M, Tian J, Forsthuber T, Ting GS, Robinson P, Atkinson MA, Sercarz EE, Tobin AJ, Lehmann PV: Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366: 69–72 (1993).

    Google Scholar 

  21. Keller RJ, Jackson RA, Eisenbarth GS: Insulin prophylaxis in individuals at high risk of type I diabetes. Lancet 341: 927–928 (1993).

    Google Scholar 

  22. Lernmark Å, Falorni A: Immunology of insulin-dependent diabetes mellitus. In: Pickup J, Williams G (eds) Textbook of Diabetes, pp. 15.1–15.23. Blackwell Science, London (1997).

    Google Scholar 

  23. Li L, Jiang J, Hagopian WA, Karlsen AE, Skelly M, Baskin DG, Lernmark Å: Differential detection of rat islet and brain glutamic acid decarboxylase (GAD) isoforms with sequencespecific peptide antibodies. J Histochem Cytochem 43: 53–59 (1995).

    Google Scholar 

  24. Li YQ, Faleri C, Geitmann A, Zhang HQ, Cresti M: Immunogold localization of arabinogalactan proteins, unesterified and esterified pectin in pollen grains and pollen tubes of Nicotiana tabacum L. Protoplasma 189: 26–36 (1995).

    Google Scholar 

  25. Lohmann T, Leslie RD, Londei M: T cell clones to epitopes of glutamic acid decarboxylase 65 raised from normal subjects and patients with insulin-dependent diabetes. J Autoimmun 9: 385–389 (1996).

    Google Scholar 

  26. Lohmann T, Leslie RD, Hawa M, Geysen M, Rodda S, Londei M: Immunodominant epitopes of glutamic acid decarboxylase 65 and 67 in insulin-dependent diabetes mellitus. Lancet 343: 1607–1608 (1994).

    Google Scholar 

  27. Ma SW, Zhao DL, Yin ZQ, Mukherjee R, Singh B, Qin HY, Stiller CR, Jevnikar AM: Transgenic plants expressing autoantigens fed to mice to induce oral immune tolerance. Nature Med 3: 793–796 (1997).

    Google Scholar 

  28. Mason HS, Ball JM, Shi J-J, Jiang X, Estes MK, Arntzen CJ: Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc Natl Acad Sci USA 93: 5335–5340 (1996).

    Google Scholar 

  29. Namchuk M, Lindsay L, Turck CW, Kanaani J, Baekkeskov S: Phosphorylation of serine residues 3, 6, 10, and 13 distinguishes membrane anchored from soluble glutamic acid decarboxylase 65 and is restricted to glutamic acid decarboxylase 65alpha. J Biol Chem 272: 1548–1557 (1997).

    Google Scholar 

  30. Petersen JS, Hejnaes KR, Moody A, Karlsen AE, Marshall MO, Hoier-Madsen M, Boel E, Michelsen BK, Dyrberg T: Detection of GAD65 antibodies in diabetes and other autoimmune diseases using a simple radioligand assay. Diabetes 43: 459–467 (1994).

    Google Scholar 

  31. Petersen JS, Russel S, Marshall MO, Kofod H, Buschard K, Cambon N, Karlsen AE, Boel E, Hagopian WA, Hejnaes KR, Moody A, Dyrberg T, Lernmark Å, Madsen OD, Michelsen BK: Differential expression of glutamic acid decarboxylase in rat and human islets. Diabetes 42: 484–495 (1993).

    Google Scholar 

  32. Sanjeevi CB, Falorni A, Robertson J, Lernmark Å: Glutamic acid decarboxylase (GAD) in insulin-dependent diabetes mellitus. Diabet Nutr Metab 9: 167–182 (1996).

    Google Scholar 

  33. Schloot NC, Roep BO, Wegmann DR, Yu L, Wang TB, Eisenbarth GS: T-cell reactivity to GAD65 peptide sequences shared with coxsackie virus protein in recent-onset IDDM, postonset IDDM patients and control subjects. Diabetologia 40: 332–338 (1997).

    Google Scholar 

  34. Shehadeh N, Calcinaro F, Bradley BJ, Bruchlim I, Vardi P, Lafferty KJ: Effect of adjuvant therapy on development of diabetes in mouse and man. Lancet 343: 706–707 (1994).

    Google Scholar 

  35. Shi Y, Veit B, Baekkeskov S: Amino acid residues 24- 31 but not palmitoylation of cysteines 30 and 45 are required for membrane anchoring of glutamic acid decarboxylase, GAD65. J Cell Biol 124: 927–934 (1994).

    Google Scholar 

  36. Solimena M, Aggujaro D, Muntzel C, Dirkx R, Butler M, De Camilli P, Hayday A: Association of GAD-65, but not of GAD-67, with the Golgi complex of transfected Chinese hamster ovary cells mediated by the N-terminal region. Proc Natl Acad Sci USA 90: 3073–3077 (1993).

    Google Scholar 

  37. Solimena M, Dirkx R, Radzynski M, Mundigl O, De Camilli P: A signal located within amino acids 1-27 of GAD65 is required for its targeting to the Golgi complex region. J Cell Biol 126: 331–341 (1994).

    Google Scholar 

  38. Stiller CR, Dupre J, Gent M, Jenner MR, Keown PA, Laupacis A, Martell R, Rodger NW, von Graffenried B, Wolfe BM: Effects of cyclosporine immunosuppression in insulindependent diabetes mellitus of recent onset. Science 223: 1362–1367 (1984).

    Google Scholar 

  39. Tacket CO, Mason HS, Losonsky G, Clements JD, Levine MM, Arntzen CJ: Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nature Med 4: 607–609 (1998).

    Google Scholar 

  40. Takase K, Hagiwara K: Expression of human alphalactalbumin in transgenic tobacco. J Biochem (Tokyo) 123: 440–444 (1998).

    Google Scholar 

  41. Thomas JC, Guiltinan MJ, Bustos S, Thomas T, Nessler C: Carrot (Daucus carota) hypocotyl transformation using Agrobacterium tumefaciens. Plant Cell Rep 8: 354–357 (1989).

    Google Scholar 

  42. Tian J, Atkinson MA, Clare-Salzler M, Herschenfeld A, Forsthuber T, Lehmann PV, Kaufman DL: Nasal administration of glutamate decarboxylase (GAD65) peptide induces Th2 responses and prevents murine insulin-dependent diabetes. J Exp Med 183: 1561–1567 (1996).

    Google Scholar 

  43. Tirlapur KU, Cai G, Faleri C, Moscatelli A, Scali M, Del Casino C, Tiezzi A, Cresti M: Confocal imaging and immunogold electron microscopy of changes in distribution of myosin during pollen hydration, germination and pollen tube growth in Nicotiana tabacum L. Eur J Cell Biol 67: 209–217 (1995).

    Google Scholar 

  44. Tisch R, Yang XD, Singer SM, Liblau RS, Fugger L, McDevitt HO: Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366: 72–75 (1993).

    Google Scholar 

  45. Vague P, Viallettes B, Lassman-Vague V, Vallo JJ: Nicotinamide may extend remission phase in insulin-dependent diabetes. Lancet 1: 619–620 (1987).

    Google Scholar 

  46. Vandewalle CL, Falorni A, Svanholm S, Lernmark Å, Pipeleers DG, Gorus FK, Belgian Diabetes Registry: High diagnostic sensitivity of glutamate decarboxylase autoantibodies in insulin-dependent diabetes mellitus with clinical onset between age 20 and 40 years. The Belgian Diabetes Registry. J Clin Endocrinol Metab 80: 846–851 (1995).

    Google Scholar 

  47. Weiner HL, Friedman A, Miller SJ, Khoury SJ, Al-Sabbagh A, Santos L, Sayegh M, Nussenblatt RB, Trentham DE, Hafler DA: Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Ann Rev Immunol 12: 809–837 (1994).

    Google Scholar 

  48. Zhang ZJ, Davidson L, Eisenbarth G, Weiner HL: Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. Proc Natl Acad Sci USA 88: 10252–10256 (1991).

    Google Scholar 

  49. Zik M, Arazi T, Snedden WA, Fromm H: Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/ calmodulin and differ in organ distribution. Plant Mol Biol 37: 967–975 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porceddu, A., Falorni, A., Ferradini, N. et al. Transgenic plants expressing human glutamic acid decarboxylase (GAD65), a major autoantigen in insulin-dependent diabetes mellitus. Molecular Breeding 5, 553–560 (1999). https://doi.org/10.1023/A:1009605729268

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009605729268

Navigation