Lifetime Data Analysis

, Volume 3, Issue 2, pp 123–137 | Cite as

A Weibull Regression Model with Gamma Frailties for Multivariate Survival Data

  • Sujit K. Sahu
  • Dipak K. Dey
  • Helen Aslanidou
  • Debajyoti Sinha


Frequently in the analysis of survival data, survival times within the same group are correlated due to unobserved co-variates. One way these co-variates can be included in the model is as frailties. These frailty random block effects generate dependency between the survival times of the individuals which are conditionally independent given the frailty. Using a conditional proportional hazards model, in conjunction with the frailty, a whole new family of models is introduced. By considering a gamma frailty model, often the issue is to find an appropriate model for the baseline hazard function. In this paper a flexible baseline hazard model based on a correlated prior process is proposed and is compared with a standard Weibull model. Several model diagnostics methods are developed and model comparison is made using recently developed Bayesian model selection criteria. The above methodologies are applied to the McGilchrist and Aisbett (1991) kidney infection data and the analysis is performed using Markov Chain Monte Carlo methods.

Autocorrelated prior process conditional predictive ordinate frailty Markov chain Monte Carlo methods model determination posterior predictive loss proportional hazards model Weibull model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, 1965.Google Scholar
  2. E. Arjas and D. Gasbarra, “Nonparametric Bayesian inference for right-censored survival data, using the Gibbs sampler,” Statistica Sinica, vol.4, pp. 505–524, 1994.MATHMathSciNetGoogle Scholar
  3. N. E. Breslow, “Covariance analysis of censored survival data,” Biometrics, vol.30, pp. 89–99, 1974.CrossRefGoogle Scholar
  4. D. Clayton, “A model for association in bivariate life tables and its application in epidemiological studies of familiar tendency in chronic disease incidence,” Biometrika, vol.65, pp. 141–151, 1978.MATHMathSciNetCrossRefGoogle Scholar
  5. D. Clayton and J. Cuzick, “Multivariate generalizations of the proportional hazards model (with discussion),” J. Roy. Statist. Soc., A vol.148, pp. 82–117, 1985.MATHMathSciNetCrossRefGoogle Scholar
  6. D. R. Cox and D. Oakes, Analysis of Survival Data, London: Chapman & Hall, 1984.Google Scholar
  7. D. Gamerman, “Dynamic Bayesian models for survival data,” Appl. Statist., vol.40, pp. 63–79, 1991.MATHCrossRefGoogle Scholar
  8. A. E. Gelfand, “Model determination using sampling based methods,” in Markov Chain Monte Carlo in Practice, (Eds. W. R. Gilks, S. Richardson and D. J. Spiegelhalter), London: Chapman and Hall, 1996, pp. 145–161.Google Scholar
  9. A. E. Gelfand and D. K. Dey, “Bayesian model choice: asymptotics and exact calculations,” J. Roy. Statist. Soc., B vol.56, pp. 501–514, 1994.MATHMathSciNetGoogle Scholar
  10. A. E. Gelfand, D. K. Dey and H. Chang, “Model determination using predictive distributions with implementation via sampling-based methods (with discussion),” in Bayesian Statistics 4, (Eds. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), Oxford: Oxford University Press, 1992, pp. 147–167.Google Scholar
  11. A. E. Gelfand and S. K. Ghosh, “Model Choice: A Minimum Posterior Predictive Loss Approach,” to appear in Biometrika, 1997.Google Scholar
  12. A. E. Gelfand and A. F. M. Smith, “Sampling based approaches to calculating marginal densities,” J. Amer. Statist. Assoc.,vol.85, pp. 398–409, 1990.MATHMathSciNetCrossRefGoogle Scholar
  13. J. Geweke, “Evaluating the accuracy of the sampling-based approaches to the calculation of the posterior moments,” in Bayesian Statistics 4, (Eds. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), Oxford: Oxford University Press, 1992, pp. 169–194.Google Scholar
  14. S. K. Ghosh, “Modeling and Analysis of Multiple Event Survival Data.” Ph. D. thesis, Department of Statistics, University of Connecticut, Storrs, Connecticut, 1996.Google Scholar
  15. W. R. Gilks, S. Richardson and D. G. Spiegelhalter, Markov Chain Monte Carlo In Practice. London: Chapman and Hall 1996.MATHGoogle Scholar
  16. W. R. Gilks and P. Wild, “Adaptive rejection sampling for Gibbs sampling,” Appl. Statist., vol.41, pp. 337–348, 1992.MATHCrossRefGoogle Scholar
  17. P. J. Green, “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination,” Biometrika,vol. 82, pp. 711–732, 1995.MATHMathSciNetCrossRefGoogle Scholar
  18. P. Hougaard, “A class of multivariate failure time distributions,” Biometrika, vol.73, pp. 671–678, 1986.MATHMathSciNetCrossRefGoogle Scholar
  19. J. D. Kalbfleisch and R. L. Prentice, “Marginal likelihoods based on Cox's regression and life model,” Biometrika, vol.60, pp. 267–278, 1973.MATHMathSciNetCrossRefGoogle Scholar
  20. R. E. Kass and A. E. Raftery, “Bayes factors,” J. Amer. Statist. Assoc.,vol.90, pp. 773–795, 1995.MATHCrossRefGoogle Scholar
  21. J. F. Lawless, Statistical Models and Methods for Life Time Data. New York: John Wiley, 1982.Google Scholar
  22. T. Leonard, “Density estimation, stochastic processes and prior information,” J. Roy. Statist. Soc.,B vol.40, pp. 113–146, 1978.MATHMathSciNetGoogle Scholar
  23. C. A. McGilchrist and C. W. Aisbett, “Regression with frailty in survival analysis,” Biometrics,vol.47, pp. 461–466, 1991.CrossRefGoogle Scholar
  24. D. Oakes, “A model for association in bivariate survival data,” J. Roy. Statist. Soc., B, vol.44, pp. 414–422, 1982.MATHMathSciNetGoogle Scholar
  25. A. E. Raftery, “Hypothesis testing and model selection,” in Markov Chain Monte Carlo in Practice, (Eds. W. R. Gilks, S. Richardson and D. J. Spiegelhalter), London: Chapman and Hall, 1996, pp. 163–187.Google Scholar
  26. A. E. Raftery and S. Lewis, “How many iterations in the Gibbs sampler?,” in Bayesian Statistics 4, (Eds. J. M. Bernado, J. O. Berger, A. P. Dawid and A. F. M. Smith), Oxford: Oxford University Press, 1992, pp. 765–776.Google Scholar
  27. D. Sinha and D. K. Dey, “Semiparametric Bayesian Analysis of Survival Data,” to appear in J. Amer. Statist. Assoc., 1997.Google Scholar
  28. D. J. Spiegelhalter, A. Thomas, N. G. Best and W. R. Gilks, “BUGS: Bayesian Inference Using Gibbs Sampling, Version 0.50.” MRC Biostatistics Unit, Cambridge, England, 1995.Google Scholar
  29. M. Tanner and W. Wong, “The Calculation of Posterior Distributions by Data Augmentation (with discussion),” J. Amer. Statist. Assoc., vol.82, pp. 528–550, 1987.MATHMathSciNetCrossRefGoogle Scholar
  30. G. A. Whitmore and M. L. T. Lee, “A multivariate survival distribution generated by an Inverse Gaussian mixture of exponentials,” Technometrics, vol.33, pp. 39–50, 1991.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Sujit K. Sahu
    • 1
  • Dipak K. Dey
    • 2
  • Helen Aslanidou
    • 2
  • Debajyoti Sinha
    • 3
  1. 1.Statistical LaboratoryUniversity of CambridgeUK
  2. 2.Department of StatisticsUniversity of ConnecticutStorrsUSA
  3. 3.Department of MathematicsUniversity of NewHampshireUSA

Personalised recommendations