Aquatic Geochemistry

, Volume 4, Issue 1, pp 123–152 | Cite as

ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols

  • Athanasios Nenes
  • Spyros N. Pandis
  • Christodoulos Pilinis

Abstract

A computationally efficient and rigorous thermodynamic model that predicts the physical state and composition of inorganic atmospheric aerosol is presented. One of the main features of the model is the implementation of mutual deliquescence of multicomponent salt particles, which lowers the deliquescence point of the aerosol phase.

The model is used to examine the behavior of four types of tropospheric aerosol (marine, urban, remote continental and non-urban continental), and the results are compared with the predictions of two other models currently in use. The results of all three models were generally in good agreement. Differences were found primarily in the mutual deliquescence humidity regions, where the new model predicted the existence of water, and the other two did not. Differences in the behavior (speciation and water absorbing properties) between the aerosol types are pointed out. The new model also needed considerably less CPU time, and always shows stability and robust convergence.

Inorganic aerosols thermodynamic equilibrium mutual deliquescence ammonium salts sodium salts aerosol model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, A. G., Harrison, R. M., Erisman, J. W. (1989) Field measurements of the dissociation of ammonium nitrate and ammonium chloride aerosols. Atmos. Environ. 23, 1591-1599.Google Scholar
  2. Bassett, M., and Seinfeld, J. H. (1983) Atmospheric equilibrium model of sulfate and nitrate aerosols. Atmos. Environ. 17, 2237-2252.Google Scholar
  3. Bassett, M., and Seinfeld, J. H. (1984) Atmospheric equilibrium model of sulfate and nitrate aerosols-II. Particle size analysis. Atmos. Environ. 18, 1163-1170.Google Scholar
  4. Bromley, L. A. (1973) Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19, 313-320.Google Scholar
  5. Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G. (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655-661.Google Scholar
  6. Denbigh, K. (1981) The principles of chemical equilibrium.Fourth Ed., Cambridge University Press, Cambridge.Google Scholar
  7. Deepak, A. and Gali, G. (1991) The international global aerosol program (IGAP) plan.Deepak Publishing, Hampton, Virginia.Google Scholar
  8. Fitzgerald, J. W. (1991) Marine aerosols: A review. Atmos. Environ. 25A, 533-545.Google Scholar
  9. Heintzenberg, J. (1989) Fine particles in the global troposphere, A review. Tellus, 41B, 149-160.Google Scholar
  10. Hildemann, L. M., Russell, A. G. and Cass, G. R. (1984) Ammonia and nitric acid concentrations in equilibrium with atmospheric aerosols: Experiment vs. Theory. Atmos. Environ. 18, 1737-1750.Google Scholar
  11. Jacobson, M. Z., Tabazadeh, A., Turco, R. P. (1996) Simulating equilibrium within aerosols and nonequilibrium between gases and aerosols. J. Geophys. Res., 101, 9079-9091.Google Scholar
  12. Kim, Y. P., Seinfeld, J. H. and Saxena, P. (1993) Atmopsheric gas-aerosol equilibrium I. Thermodynamic model. Aerosol Sci. Technol., 19, 157-181.Google Scholar
  13. Kim, Y. P., Seinfeld, J. H. and Saxena, P. (1993b) Atmopsheric gas-aerosol equilibrium II. Analysis of common approximations and activity coefficient methods. Aerosol Sci. Technol. 19, 182-198.Google Scholar
  14. Kusik, C. L. and Meissner, H. P. (1978) Electrolyte activity coefficients in inorganic processing. AIChE Symp. Series 173, 14-20.Google Scholar
  15. Meng, Z. and Seinfeld, J. H. (1996) Time scales to achieve atmospheric gas-aerosol equilibrium for volatile species., Atmos. Environ. 30, 2889-2900.Google Scholar
  16. Pandis, S. N., Wexler, A. S., Seinfeld, J. H. (1995) Dynamics of tropospheric aerosols. J. Phys. Chem., 99, 9646-9659.Google Scholar
  17. Pilinis, C. and Seinfeld, J. H. (1987) Continued development of a general equilibrium model for inorganic multicomponent atmospheric aerosols. Atmos. Environ. 21, 2453-2466.Google Scholar
  18. Pilinis, C., Pandis, S. N., Seinfeld, J. H. (1995) Sensitivity of direct climate forcing by atmospheric aerosols to aerosols size and composition. J. Geophys. Res., 100, 18739-18754.Google Scholar
  19. Pitzer, K. S. and Mayorga, G. (1973) Thermodynamics of electrolytes - II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem., 77, 2300-2308.Google Scholar
  20. Potukuchi, S. and Wexler, A. S. (1995a) Identifying solid-aqueous phase transitions in atmospheric aerosols - I. Neutral-acidity solutions. Atmos. Environ., 29, 1663-1676.Google Scholar
  21. Potukuchi, S. and Wexler, A. S. (1995b) Identifying solid-aqueous phase transitions in atmospheric aerosols - II. Acidic solutions. Atmos. Environ. 29, 3357-3364.Google Scholar
  22. Quinn, P. K., Asher, W. E. and Charlson, R. J. (1992) Equilibria of the marine multiphase ammonia system. J. Atmos. Chem., 14, 11-30.Google Scholar
  23. Robinson, R. A. and Stokes, R. H. (1965) Electrolyte solutions.Second Ed., Butterworths, London.Google Scholar
  24. Russell, L. M., Pandis, S. N., Seinfeld, J. H. (1994) Aerosol production and growth in the marine boundary layer. J. Geophys. Res., 99, 20989-21003.Google Scholar
  25. Saxena, P. and Peterson, T. W. (1981) Thermodynamics of multicomponent electrolytic aerosols. J. Coll. Interf. Sci. 79, 496-510.Google Scholar
  26. Saxena, P., Hudischewsky, A. B., Seigneur, C., Seinfeld, J. H. (1986) A comparative study of equilibrium approaches to the chemical characterization of secondary aerosols. Atmos. Environ., 20, 1471-1483.Google Scholar
  27. Saxena, P., Mueller, P. K., Kim, Y. P., Seinfeld, J. H., Koutrakis, P. (1993) Coupling thermodynamic theory with measurments to characterize acidity of atmospheric aerosols. Aeros. Sci. Tech., 19, 279-293.Google Scholar
  28. Tang, I. N. and Munkelwitz, H. R. (1993) Composition and temperature dependance of the deliquescence properties of hygroscopic aerosols. Atmos. Environ., 27A, 467-473.Google Scholar
  29. Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Harlow, I., Bailey, S. M., Churney, K. L., Nuttall, R. L. (1982) The NBS tables of chemical thermodynamic properties. J. Phys. Chem. Ref. Data.Vol. 11, Suppl. 2Google Scholar
  30. Wexler, A. S. and Seinfeld, J. H. (1991) Second-generation inorganic aerosol model. Atmos. Environ. 25A, 2731-2748.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Athanasios Nenes
    • 1
  • Spyros N. Pandis
    • 2
  • Christodoulos Pilinis
    • 3
  1. 1.Division of Marine and Atmospheric Chemistry, Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiU.S.A
  2. 2.Departments of Chemical Engineering and Engineering and Public PolicyCarnegie Mellon UniversityPittsburghU.S.A
  3. 3.Environmental Science DepartmentUniversity of AegeanMytileneGreece

Personalised recommendations