Estrogen Receptor Alpha in Human Breast Cancer: Occurrence and Significance

  • Simak Ali
  • R. Charles Coombes


Estrogens have long been recognized as being important for stimulating the growth of a large proportion of breast cancers. Now it is recognized that estrogen action is mediated by two receptors, and the presence of estrogen receptor α (ERα)3 correlates with better prognosis and the likelihood of response to hormonal therapy. Over half of all breast cancers overexpress ERα and around 70% of these respond to anti-estrogen (for example tamoxifen) therapy. In addition, the presence of elevated levels of ERα in benign breast epithelium appears to indicate an increased risk of breast cancer, suggesting a role for ERα in breast cancer initiation, as well as progression. However, a proportion of ERα-positive tumors does not respond to endocrine therapy and the majority of those that do respond eventually become resistant. Most resistant tumors remain ERα-positive and frequently respond to alternative endocrine treatment, indicative of a continued role for ERα in breast cancer cell proliferation. The problem of resistance has resulted in the search for and the development of diverse hormonal therapies designed to inhibit ERα action, while research on the mechanisms which underlie resistance has shed light on the cellular mechanisms, other than ligand binding, which control ERα function.

breast cancer estrogen receptor endocrine therapies resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Kelsey and G. S. Berkowitz (1988). Breast cancer epidemiology. Cancer Res. 48:5615–5623.Google Scholar
  2. 2.
    I. H. Russo and J. Russo (1998). Role of hormones in mammary cancer initiation and progression. J. Mam. Gland Biol. Neoplasia 3(1):49–61.Google Scholar
  3. 3.
    K. R. Yamamoto (1985). Steroid receptor regulated transcription of specific genes and gene networks. Ann. Rev. Genet. 19:209–252.Google Scholar
  4. 4.
    D. J. Mangelsdorf, C. Thummel, M. Beato, P. Herrlich, G. Schutz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and R. M. Evans (1995). The nuclear receptor superfamily: The second decade. Cell 83:835–839.Google Scholar
  5. 5.
    B. Blumberg and R. M. Evans (1998). Orphan nuclear receptors: New ligands and new possibilities. Genes Dev. 12:3149–3155.Google Scholar
  6. 6.
    J. W. R. Schwabe, L. Chapman, J. T. Finch, and D. Rhodes (1993). The crystal structure of the estrogen receptor DNAbinding domain bound to DNA: How receptors discriminate between their response elements. Cell 70:567–578.Google Scholar
  7. 7.
    A. M. Brzozowski, A. C. W. Pike, Z. Dauter, R. E. Hubbard, T. Bonn, O. Engstrom, L. Ohman, G. L. Green, J.-A. Gustafsson, and M. Carlquist (1997). Molecular basis of agonism and antagonism of the oestrogen receptor. Nature 389: 753–758.Google Scholar
  8. 8.
    A. K. Shiau, D. Barstad, P. M. Loria, L. Cheng, P. J. Kushner, D. A. Agard, and G. L. Greene (1998). The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937.Google Scholar
  9. 9.
    D. M. Tanenbaum, Y. Wang, S. P. Williams, and P. B. Sigler (1998). Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc. Natl. Acad. Sci. U.S.A. 95:5998–6003.Google Scholar
  10. 10.
    H. Gronemeyer (1991). Transcription activation by estrogen and progesterone receptors. Ann. Rev. Biochem. 25:89–123.Google Scholar
  11. 11.
    M. J. Tsai and B. W. O'Malley (1994). Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann. Rev. Biochem. 63:451–486.Google Scholar
  12. 12.
    M. Beato, P. Herlich, and G. Schutz (1995). Steroid hormone receptors: Many actors in search of a plot. Cell 83:851–857.Google Scholar
  13. 13.
    S. Dauvois, P. S. Danielian, R. White, and M. G. Parker (1992). Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc. Natl. Acad. Sci. U.S.A. 89:4037–4041.Google Scholar
  14. 14.
    S. Dauvois, R. White, and M. G. Parker (1993). The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling. J. Cell Sci. 106:1377–1388.Google Scholar
  15. 15.
    Y. Sadovsky, P. Webb, G. Lopez, J. D. Baxter, P. M. Fitzpatrick, E. Gizang-Ginsberg, V. Cavailles, M. G. Parker, and P. J. Kushner (1995). Transcriptional activators differ in their responses to overexpression of TATA-box-binding protein. Mol. Cell Biol. 15:1554–1563.Google Scholar
  16. 16.
    N. H. Ing, J. M. Beekman, S. Y. Tsai, M J. Tsai, and B. W. O'Malley (1992). Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II). J. Biol. Chem. 267:17617–17623.Google Scholar
  17. 17.
    X. Jacq, C. Brou, Y. Lutz, I. Davidson, P. Chambon, and L. Tora (1994). Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. Cell 79:107–117.Google Scholar
  18. 18.
    B. Hanstein, R. Eckner, J. DiRenzo, S. Halachmi, H. Liu, B. Searcy, R. Kurokawa, and M. Brown (1996). p300 is a component of an estrogen receptor coactivator complex. Proc. Natl. Acad. Sci. U.S.A. 93:11540–11545.Google Scholar
  19. 19.
    L. P. Freedman (1999). Increasing the complexity of coactivation in nuclear receptor signaling. Cell 97:5–8.Google Scholar
  20. 20.
    C. K. Glass and M. G. Rosenfeld (2000). The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14:121–141.Google Scholar
  21. 21.
    T. Perlmann and R. M. Evans (1988). Nuclear receptors in Sicily: All in the famiglia. Cell 90:391–397.Google Scholar
  22. 22.
    D. P. Edwards (2000). The role of coactivators and corepressors in biology and mechanism of action of steroid hormone receptors. J. Mam. Gland Biol. Neoplasia 5(3)(1)xx–xx.Google Scholar
  23. 23.
    A. M. Brzozowski, A. C. W. Pike, Z. Dauter, R. E. Hubbard, T. Bonn, O. Engstrom, L. Ohman, G. L. Green, J.-A. Gustafsson, and M. Carlquist (1997). Molecular basis of agonism and antagonism of the oestrogen receptor. Nature 389:753–758.Google Scholar
  24. 24.
    D. Moras and H. Gronemeyer (1998). The nuclear receptor ligand-binding domain: Structure and function. Curr. Opin. Cell Biol. 10:384–391.Google Scholar
  25. 25.
    D. Ricketts, L. Turnbull, G. Ryall, R. Bakhshi, N. S. B. Rawson, J.-C. Gazet, C. Nolan, and R. CCoombes (1991). Estrogen and progesterone receptors in the normal female breast. Cancer Res. 51:1817–1822.Google Scholar
  26. 26.
    A. S. Khan, M. A. M. Rogers, K. K. Khurana, M. M. Meguid, and P. J. Numann (1998). Estrogen receptor expression in benign breast epithelium and breast cancer risk. J. Natl. Cancer Inst. 90:37–42.Google Scholar
  27. 27.
    I. F. O'Connor, M. V. Shembekar, and S. Shousha (1998). Breast carcinoma developing in patients on hormone replacement therapy: A histological and immunohistological study. J. Clin. Pathol. 51(12):935–938.Google Scholar
  28. 28.
    C. Markopoulos, U. Berger, P. Wilson, J.-C. Gazet, and R. C. Coombes (1988). Estrogen receptor content of normal breast cells and breast carcinomas throughout the menstrual cycle. Brit. Med. J. 296:1349–1351.Google Scholar
  29. 29.
    H. Kirkman (1959). Induction of renal tumors by estrogens. Natl. Cancer Inst. Monogr. 1:1–59.Google Scholar
  30. 30.
    E. L. Cavalieri, D. E. Stack, P. D. Devanesan, R. Todorovic, I. Dwivedy, S. Higginbothan, S. L. Johansson, K. D. Patil, M. L. Gross, J. K. Gooden, R. Ramanathan, R. L. Cerny, and E. G. Rogan (1997). Molecular origin of cancer: Catechol estrogen-3, 4-quinones as endogenous tumor initiators. Proc. Natl. Acad. Sci. U.S.A. 94:10937–10942.Google Scholar
  31. 31.
    I. Dwivedy, P. Devanesan, P. Cremonesi, E. Rogan, and E. Cavalieri (1992). Synthesis and characterization of estrogen 2, 3-and 3, 4-quinones. Comparison of DNA adducts formed by the quinones versus horseradish peroxidase-activated catechol estrogens. Chem. Res. Toxicol. 5(6):828–833.Google Scholar
  32. 32.
    C. L. Hayes, D. C. Spink, B. C. Spink, J. Q. Cao, N. J. Walker, and T. R. Sutter (1996). 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc. Natl. Acad. Sci. U.S.A. 93(18):9776–9781.Google Scholar
  33. 33.
    C. S. Huang, H. D. Chern, K. J. Chang, C. W. Cheng, S. M. Hsu, and C. Y. Shen (1999). Breast cancer risk associated with genotype polymorphism of the estrogen-metabolizing genes CYP17, CYP1A1, and COMT: A multigenic study on cancer susceptibility. Cancer Res. 59(19):4870–4875.Google Scholar
  34. 34.
    J. L. Stanford, M. Szklo, and L. A. Brinton (1986). Estrogen receptors and breast cancer. Epidemiol Rev. 8:42–59.Google Scholar
  35. 35.
    L. A. Habel and J. L. Stanford (1993). Hormone receptors and breast cancer. Epidemiol Rev. 15:209–219.Google Scholar
  36. 36.
    A. Zeleniuch-Jacquotte, P. Toniolo, M. Levitz, R. E. Shore, K. L. Koenig, and S. Banarjee et al. (1995). Endogenous estrogens and risk of breast cancer by estrogen receptor status: A prospective study in postmenopausal women. Cancer Epidemiol. Biomarkers Prev. 4:857–860.Google Scholar
  37. 37.
    J. F. R. Robertson (1996). Estrogen receptor: a stable phenotype in breast cancer. Brit. J. Cancer 73:5–12.Google Scholar
  38. 38.
    T. J. Powles, C. Gordon, and R. C. Coombes (1982). Clinical trial of multiple endocrine therapy for metastatic and locally advanced breast cancer with tamoxifen-aminoglutethimidedanazol compared to tamoxifen used alone. Cancer Res. 42(Suppl):34158–34195.Google Scholar
  39. 39.
    R. C. Coombes, S. W. M. Hughes, and M. Dowsett (1992). 4-hydroxy-androstenedione: A new treatment for Postmenopausal patients with breast cancer. Eur. J. Cancer 28A: 1963–1965.Google Scholar
  40. 40.
    R. E. Taylor, T. J. Powles, J. Humphreys, R. Bettelheim, M. Dowsett, A. J. Casey, A. M. Neville, and R. C. Coombes (1982). Effects of endocrine therapy on steriod-receptor content of breast cancer. Brit. J. Cancer 45:80–85.Google Scholar
  41. 41.
    R. B. Clarke, I. J. Laidlaw, L. J. Jones, A. Howell, and E. Anderson (1993). Effect of tamoxifen on Ki67 labelling index in human breast tumours and its relationship to oestrogen and progesterone receptor status. Brit. J. Cancer 67:606–611.Google Scholar
  42. 42.
    P. A. Murray, K. Gomm, D. Ricketts, T. Powles, and R. C. C. Coombes (1994). The effect of endocrine therapy on the levels of estrogen and progesterone receptor and transforming growth factor-β1 inmetastatic human breast cancer: An immunocytochemical study. Eur. J. Cancer 30:1218–1222.Google Scholar
  43. 43.
    Early Breast Cancer Trialists' Collaborative Group (1998). Polychemo-therapy for early breast cancer: An overview of the randomised trials. Lancet 352:930–942.Google Scholar
  44. 44.
    R. C. Coombes, T. J Powles, U. Berger, P. Wilson, R. A. McClelland, J.-C. Gazet, P. A. Trott, and H. T. Ford (1987). Prediction of endocrine response in breast cancer by immunocytochemical detection of estrogen receptor in fine needle aspirates. Lancet 2:701–703.Google Scholar
  45. 45.
    T. A. Hopp and S. A. W. Fuqua (1998). Estrogen receptor variants. J. Mam. Gland Biol. Neoplasia 3(1):73–83.Google Scholar
  46. 46.
    C. K. Watts, M. L. Handel, R. J. King, and R. L. Sutherland (1992). Estrogen receptor gene structure and function in breast cancer. J. Steroid Biochem. Mol. Biol. 41(38):529–536.Google Scholar
  47. 47.
    S. Saji, E. V. Jensen, S. Nilsson, T. Rylander, M. Warner, and J.-A. Gustafsson (2000). Estrogen receptors α and β in the rodent mammary gland. Med. Sci. 97:337–342.Google Scholar
  48. 48.
    P. Pace, J. Taylor, S. Suntharalingam, R. C. Coombes, and S. Ali (1997). Human estrogen receptor beta binds DNA in a manner similar to and dimerizes with estrogen receptor α. J. Biol. Chem. 272:25832–25838.Google Scholar
  49. 49.
    S. M. Cowley, S. Hoare, S. Mosselman, and M. G. Parker (1997). Estrogen receptor α and β form heterodimers on DNA. J. Biol. Chem. 272:19858–19862.Google Scholar
  50. 50.
    S. Ogawa, S. Inoue, T. Watanabe, H. Hiroi, A. Orimo, T. Hosoi, Y. Ouchi, and M. Muramatsu (1998). The complete primary structure of human estrogen receptor β (hERBβ) and its heterodimerization with ERα in vivo and in vitro. Biochem. Biophys. Res. Commun. 243:122–126.Google Scholar
  51. 51.
    K. Pettersson, K. Grandien, G. G. Kuiper, and J. A. Gustafsson (1997). Mouse estrogen receptor β forms estrogen response element-binding heterodimers with estrogen receptor β. Mol. Endocrinol. 10:499–507.Google Scholar
  52. 52.
    A. J. Desai, Y. A. Luqmani, J. E. Walters, R. C. Coope, B. Dagg, J. J. Gomm, P. E. Pace, C. N. Rees, S. Shousha, N. P. Groome, R. C. Coombes, and S. Ali (1997). Presence of exon 5-deleted oestrogen receptor in human breast cancer: Functional analysis and clinical significance. Brit. J. Cancer 75:1173–1184.Google Scholar
  53. 53.
    H. Ohlsson, A. E. Lykkesfeldt, M. W. Madsen, and P. Briand (1998). The estrogen receptor variant lacking exon 5 has dominant negative activity in the human breast epithelial cell line HMT-3522S1. Cancer Res. 58(19):4264–4268.Google Scholar
  54. 54.
    T. Hunter and M. Karin (1992). The regulation of transcription by phosphorylation. Cell 70:375–387.Google Scholar
  55. 55.
    S. P. Jackson (1992). Regulating transcription factor activity by phosphorylation. Trends Cell Biol. 2:104–108.Google Scholar
  56. 56.
    M. Karin (1994). Signal transduction from the cell surface to the nucleus through phosphorylation of transcription factors. Curr. Opin. Cell Biol. 6:415–424.Google Scholar
  57. 57.
    C. L. Smith (1998). Cross-talk between peptide growth factor and estrogen receptor signaling pathways. Biol. Reprod. 58:627–632.Google Scholar
  58. 58.
    D. Shao and M. A. Lazar (1999). Modulating nuclear receptor function: May the phos be with you. J. Clin. Invest. 103:1617–1618.Google Scholar
  59. 59.
    K. E. Weis, K. Ekena, J. A. Thomas, G. Lazennec, and B. S. Katzenellenbogen (1996). Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol. Endocrinol. 10: 1388–1398.Google Scholar
  60. 60.
    R. White, M. Sjoberg, E, Kalkhoven, and M. G. Parker (1997). Ligand-independent activation of the oestrogen receptor by mutation of a conserved tyrosine. EMBO J. 16:1427–1435.Google Scholar
  61. 61.
    Q. X. Zhang, A. Borg, D. M. Wolf, S. Oesterreich, and S. A. Fuqua (1997). An estrogen receptor mutant with strong hormone-independent activity from ametastatic breast cancer. Cancer Res. 57(7):1244–1249.Google Scholar
  62. 62.
    S. F. Arnold, M. Melamed, D. P. Vorojeikina, A. C. Notides, and S. Sasson (1997). Estradiol-binding mechanism and binding capacity of the human estrogen receptor is regulated by tyrosine phosphorylation. Mol. Encocrinol. 11(1):48–53.Google Scholar
  63. 63.
    D. Chen, P. E. Pace, R. C. Coombes, and S. Ali (1999). Phosphorylation of human estrogen receptor α by protein kinase A regulates dimerization. Mol. Cell. Biol. 19:1002–1015.Google Scholar
  64. 64.
    S. Ali, D. Metzger, J.-M Bornert, and P. Chambon (1993). Phosphorylation of the human oestrogen receptor. Identification of a phosphorylation site required for transactivation. EMBO J. 12:1153–1160.Google Scholar
  65. 65.
    P. Le Goff, M. M. Montano, D. J. Schodin, and B. S. Katzenellenbogen (1994). Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J. Biol. Chem. 269:4458–4466.Google Scholar
  66. 66.
    P. B. Joel, J. Smith, T. W. Sturgill, T. L. Fisher, J. Blenis, and D. A. Lannigan (1998). pp90rsk1 regulates estrogen receptormediated transcription through phosphorylation of Ser-167. Mol. Cell Biol. 18:1978–1984.Google Scholar
  67. 67.
    I. Rogatsky, J. M. Trowbridge, and M. J. Garabedian (1999). Potentiation of human estrogen receptor alpha transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 complex. J. Biol. Chem. 274:22296–222302.Google Scholar
  68. 68.
    S. Kato, H. Endoh, Y. Masuhiro, T. Kitamoto, S. Uchiyama, H. Sasaki, S. Masushige, Y. Gotoh, E. Nishida, H. Kawashima, D. Metzger, and P. Chambon (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 1995:1491–1494.Google Scholar
  69. 69.
    G. Bunone, P.-E. Briand, R. J. Miksicek, and D. Picard (1996). Activation of the unliganded estrogen receptor by EFG involves the MAP kinase pathway and direct phosphorylation. EMBO J. 15(9):2174–2183.Google Scholar
  70. 70.
    P. B. Joel, A. M. Traish, and D. A. Lannigan (1998). Estradiolinduced phosphorylation of serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase. J. Biol. Chem. 273:13317–13323.Google Scholar
  71. 71.
    D. Chen, T. Riedl, E. Washbrook, P. E. Pace, R. C. Coombes, J. M. Egly, and S. Ali (2000). Activation of Estrogen Receptor a by S118 Phosphorylation Involves a Ligand-Dependent Interaction with TFIIH and Participation of CDK7. Mol. Cell 6:127–137.Google Scholar
  72. 72.
    P. C. Gordge, M. J. Hulme, R. A. Clegg, and W. R. Miller (1996). Elevation of protein kinase A and protein kinase C activities in malignant as compared with normal human breast tissue. Eur. J. Cancer 32A(12):2120–2126.Google Scholar
  73. 73.
    W. R. Miller, R. A. Elton, J. M. Dixon, U. Chetty, and D. M. Watson (1990). Cyclic AMP binding proteins and prognosis in breast cancer. Brit. J. Cancer 61:263–266.Google Scholar
  74. 74.
    V. S. Sivaraman, H.-Y. Wang, G. J. Nuovo, and C. C. Malbon (1997). Hyperexpression of mitogen-activated protein kinase in human breast cancer. J. Clin. Invest. 99:1478–1483.Google Scholar
  75. 75.
    A. S. Coutts and L. C. Murphy (1998). Elevated mitogenactivated protein kinase activity in estrogen-nonresponsive human breast cancer cells. Cancer Res. 58:4071–4074.Google Scholar
  76. 76.
    O. M. Sobulo, J. Borrow, R. Tomek, S. Reshmi, A. Harden, B. Schlegelberger, D. Housman, N. A. Doggett, J. D. Rowley, and N. J. Zeleznik-Le (1997). MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc. Natl. Acad. Sci. U.S.A. 94:8732–8737.Google Scholar
  77. 77.
    S. L. Anzick, J. Kononen, R. L. Walker, D. O. Azorsa, M. M. Tanner, X. Y. Guan, G. Sauter, O. P. Kallioniemi, J. M. Trent, and P. S. Meltzer (1997). AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277:965–968.Google Scholar
  78. 78.
    J. Xu, Y. Qiu, F. J. DeMayo, S. Y. Tsai, M. J. Tsai, and B. W. O'Malley (1998). Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279:1922–1925.Google Scholar
  79. 79.
    J. Xu et al. (2000). The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc. Natl. Acad. Sci. U.S.A. 97(12):6379–6384.Google Scholar
  80. 80.
    R. M. Lavinsky, K. Jepsen, T. Heinzel, J. Torchia, T. M. Mullen, R. Schiff, A. L. DelRio, M. Ricote, S. Ngo, J. Gemsch, S. G. Hilsenbeck, C. K. Osborne, C. K. Glass, M. G. Rosenfeld, and D. W. Rose (1998). Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc. Natl. Acad. Sci. U.S.A. 95:2920–2925.Google Scholar
  81. 81.
    R. C. Stein, M. Dowsett, A. Hedley, J.-C. Gazet, H. T. Ford, and R. C. Coombes (1990). The clinical and endocrine effects of 4-hydroxyandrostenedione alone and in combination with goserelin in premenopausal women with advanced breast cancer. Brit. J. Cancer 62:679–683.Google Scholar
  82. 82.
    P. E. Lonning, S. Jacobs, A. Jones et al. (1991). The influence of CGS 16949A on peripheral aromatization in breast cancer patients. Brit. J. Cancer 63:789–793.Google Scholar
  83. 83.
    M. Dowsett, D. Doody, S. Miall, A. Howes, J. English, and R. C. Coombes (1999). Vorozole results in greater estrogen suppression than formestane in postmenopausal women and when added to goserelin in premenopausal women with advanced breast cancer. Breast Cancer Res. Treat. 56:25–34.Google Scholar
  84. 84.
    C. Harper-Wynne and R. C. Coombes (1999). Anastrozole shows evidence of activity in postmenopausal patients who have responded or stabilized on formestane therapy. Eur. J. Cancer 35:744–746.Google Scholar
  85. 85.
    R. Murray and P. Pitt (1995). Aromatase inhibition with 4-OH Androstendione after prior aromatase inhibition with aminoglutethimide in women with advanced breast cancer. Breast Cancer Res. Treat. 35:249–253.Google Scholar
  86. 86.
    B. Thurlimann, R. Paridaens, and D. Serin et al. (1997). Thirdline hormonal treatment with exemestane in postmenopausal patients with advanced breast cancer progressing on aminoglutethimide: A phase II multi center multinational study. Eur. J. Cancer 33:1767–1773.Google Scholar
  87. 87.
    M.-H. Jeng, M. A. Shupnik, T. P. Bender, E. H. Westin, D. Bandyopadhyay, R. Kumar, S. Masamura, and R. J. Santen (1998). Estrogen receptor expression and function in long-term estrogen-deprived human breast cancer cells. Endocrinology 139(10):4164–4174.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Simak Ali
    • 1
  • R. Charles Coombes
    • 2
  1. 1.CRC Laboratories, Department of Cancer Medicine, MRC Cyclotron BuildingImperial College School of Medicine, Hammersmith HospitalLondon
  2. 2.CRC Laboratories, Department of Cancer Medicine, MRC Cyclotron BuildingImperial College School of Medicine, Hammersmith HospitalLondon

Personalised recommendations