Journal of Mammary Gland Biology and Neoplasia

, Volume 5, Issue 4, pp 379–391 | Cite as

Xenograft Models of Premalignant Breast Disease

  • Fred R. Miller


Dysplastic and hyperplastic proliferative lesions with graded severity of atypia are recognized in a number of tissues and are generally suspected to be premalignant, that is to say at high risk for further progressing to carcinoma in situ and invasive cancer. However, few xenograft models of premalignancy for any organ site have been successfully developed. A good model of human premalignant breast disease would lead to lesions which resemble high risk human breast disease in xenografts and sporadically progress to invasive cancer with time. In this chapter the use of breast tissue pieces and epithelial cells for establishment of xenografts and the development of human breast epithelial cell lines that form premalignant xenograft lesions are described. MCF10AT cells not only form simple differentiated ducts which persist in xenografts and sporadically progress to carcinoma, but also form intermediate proliferative lesions resembling proliferative disease without atypia, atypical hyperplasia, and carcinoma in situ.

Breast carcinoma in situ MCF10AT premalignant progression xenograft 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. Thomsen (1976). Heterotransplantation of a humanmammary carcinoma to the mouse mutant nude. Acta. Pathol. Microbiol. Scand. A. 84:350–352.Google Scholar
  2. 2.
    Y. Shimosato, T. Kameya, K. Nagai, S. Hirohashi, T. Koide, H. Hayashi, and T. Nomura (1976). Transplantation of human tumors in nude mice. J. Natl. Cancer Inst. 56:1251–1260.Google Scholar
  3. 3.
    L. Ozzello, B. Sordat, C. Merenda, S. Carrel, J. Hurlimann, and J. P. Mach (1974). Transplantation of a human mammary carcinoma cell line (BT 20) into nude mice. J. Natl. Cancer Inst. 52:1669–1672.Google Scholar
  4. 4.
    L. Ozzello and M. Sordat (1980). Behavior of tumors produced by transplantation of human mammary cell lines in athymic nude mice. Eur. J. Cancer 16:553–559.Google Scholar
  5. 5.
    K. Joshi, J. A. Smith, N. Perusinghe, and P. Monoghan (1986). Cell proliferation in the human mammary epithelium. Differential contribution by epithelial and myoepithelial cells. Am. J. Pathol. 124:199–206.Google Scholar
  6. 6.
    E. A. Hillman, M.G. Valerio, S.A. Halter, L.A. Barrett-Boone, and B.F. Trump (1983). Long-term explant culture of normal mammary epithelium. Cancer Res. 43:245–257.Google Scholar
  7. 7.
    L. G. Sheffield and C. W. Welsch (1988). Transplantation of human breast epithelia to mammary-gland-free fat-pads of athymic nude mice: Influence of mammotrophic hormones on growth of breast epithelia. Int. J. Cancer 41:713–719.Google Scholar
  8. 8.
    B. A. Gusterson, J. Williams, H. Bunnage, M. J. O'Hare, and J. D. Dubois (1984). Human breast epithelium transplanted into nude mice. Proliferation and milk protein production in response to pregnancy. Virchows Arch. A Pathol. Anat. Histopathol. 404:325–333.Google Scholar
  9. 9.
    J. D. Dubois, M. J. O'Hare, P. Monaghan, J. Bartek, R. Norris, and B. A. Gusterson (1987). Human breast epithelial xenografts: An immunocytochemical and ultrastructural study of differentiation and lactogenic response. Differentiation 35:72–82.Google Scholar
  10. 10.
    I. J. Laidlaw, R. B. Clarke, A. Howell, A.W. Owen, C. S. Potten, and E. Anderson (1995). The proliferation of normal human breast tissue implanted into athymic nude mice is stimulated by estrogen but not progesterone. Endocrinology 136:164–171.Google Scholar
  11. 11.
    R. B. Clarke, A. Howell, and E. Anderson (1997). Estrogen sensitivity of normal human breast tissue in vivo and implanted into athymic nude mice: Analysis of the relationship between estrogen-induced proliferation and progesterone receptor expression. Breast Cancer Res. Treat. 45:121–133.Google Scholar
  12. 12.
    R.B. Clarke, A. Howell, and E. Anderson (1997). Type I insulinlike growth factor receptor gene expression in normal human breast tissue treated with oestrogen and progesterone. Brit. J. Cancer 75:251–257.Google Scholar
  13. 13.
    S.N. Zaidi, I. Laidlaw, A. Howell, C. S. Potten, D. P. Cooper, and P. J. O'Connor (1992). Normal human breast xenografts activate N-nitrosodimethylamine: Identification of potential target cells for an environmental nitrosamine. Brit. J. Cancer 66:79–83.Google Scholar
  14. 14.
    S. S. Brem, H. M. Jensen, and P. M. Gullino (1978). Angiogenesis as a marker of preneoplastic lesions of the human breast. Cancer 41:239–244.Google Scholar
  15. 15.
    P. M. Gullino (1977). Considerations on the preneoplastic lesions of the mammary gland. Amer. J. Pathol. 89:413–430.Google Scholar
  16. 16.
    H.C. Outzen and R. P. Custer (1975). Growth of human normal and neoplastic mammary tissues in the cleared fat pad of the nude mouse. J. Natl. Cancer Inst. 55:1461–1466.Google Scholar
  17. 17.
    C. W. Welsch (1978). Prolactin and the development and progression of early neoplastic mammary gland lesions. Cancer Res. 38:4054–4058.Google Scholar
  18. 18.
    H. M. Jensen and S. R. Wellings (1976). Preneoplastic lesions of the human mammary gland transplanted into the nude athymic mouse. Cancer Res. 36:2605–2610.Google Scholar
  19. 19.
    P. A. Holland, W.F. Knox, C. S. Potten, A. Howell, E. Anderson, A. D. Baildam, and N. J. Bundred (1997). Assessment of hormone dependence of comedo ductal carcinoma in situ of the breast. J. Natl. Cancer Inst. 89:1059–1065.Google Scholar
  20. 20.
    J. Yang, R. C. Guzman, N. Popnikolov, G. K. Bandyopadhyay, K. Christov, G. Collins, and S. Nandi (1994). Phenotypic characterization of collagen gel embedded primary human breast epithelial cells in athymic nude mice. Cancer Lett. 81:117–127.Google Scholar
  21. 21.
    J. Yang, A. Liu, C. Dougherty, X. Chen, R. Guzman, and S. Nandi (2000). Estrogen and progesterone receptors can be maintained in normal human breast epithelial cells in primary culture and after transplantation into nude mice. Oncol. Rep. 7:17–21.Google Scholar
  22. 22.
    M. R. Stampfer and P. Yaswen (2000). Culture models of human mammary epithelial cell transformation. J. Mam. Gland Biol. Neoplasia 5 (4): 365–378.Google Scholar
  23. 23.
    M. R. Stampfer and J. C. Bartley (1985). Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc. Natl. Acad. Sci. U.S.A. 82:2394–2398.Google Scholar
  24. 24.
    R. Clark, M. R. Stampfer, R. Milley, E. O'Rourke, K.H. Walen, M. Kriegler, J. Kopplin, and F. McCormick (1988). Transformation of human mammary epithelial cells by oncogenic retroviruses. Cancer Res. 48:4689–4694.Google Scholar
  25. 25.
    M. R. Stampfer and J. C. Bartley (1988). Human mammary epithelial cells in culture: Differentiation and transformation. Cancer Treat. Res. 40:1–24.Google Scholar
  26. 26.
    Y. F. Zhai, H. Beittenmiller, B. Wang, M. N. Gould, C. Oakley, W. J. Esselman, and C.W. Welsch (1993). Increased expression of specific protein tyrosine phosphatases in human breast epithelial cells neoplastically transformed by the neu oncogene. Cancer Res. 53:2272–2278.Google Scholar
  27. 27.
    V. Band and R. Sager (1989). Distinctive traits of normal and tumor-derived human mammary epithelial cells expressed in a medium that supports long-term growth of both cell types. Proc. Natl. Acad. Sci. U.S.A. 86:1249–1253.Google Scholar
  28. 28.
    V. Band, D. Zajchowski, V. Kulesa, and R. Sager (1990). Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements. Proc. Natl. Acad. Sci. U.S.A. 87:463–467.Google Scholar
  29. 29.
    W. Sun, K. S. Kang, I. Morita, J. E. Trosko, and C. C. Chang (1999). High susceptibility of a human breast epithelial cell type with stem cell characteristics to telomerase activation and immortalization. Cancer Res. 59:6118–6123.Google Scholar
  30. 30.
    C.-Y. Kao, K. Nomata, C. S. Oakley, C. W. Welsch, and C.-C. Chang (1995). Two types of normal human breast epithelial cells derived from reduction mammoplasty: Phenotypic characterization and response to SV40 transfection. Carcinogenesis 16:531–538.Google Scholar
  31. 31.
    C. Y. Kao, C. S. Oakley, C.W. Welsch, and C. C. Chang (1997). Growth requirements and neoplastic transformation of two types of normal human breast epithelial cells derived from reduction mammoplasty. In Vitro Cell. Dev. Biol. Anim. 33:282–288.Google Scholar
  32. 32.
    H. D. Soule, T. M. Maloney, S. R. Wolman, W. D. J. Peterson, R. Brenz, C. M. McGrath, J. Russo, R. J. Pauley, R. F. Jones, and S. C. Brooks (1990). Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50:6075–6086.Google Scholar
  33. 33.
    R. J. Pauley, H. D. Soule, L. Tait, F. R. Miller, S. R. Wolman, P. J. Dawson, and G. H. Heppner (1993). The MCF10 family of spontaneously immortalized human breast epithelial cell lines: models of neoplastic progression. Eur. J. Cancer. Prev. [2 Suppl.] 3:67–76.Google Scholar
  34. 34.
    S. R. Wolman, A.N. Mohamed, G. H. Heppner, and H.D. Soule (1994). Chromosomal markers of immortalization in human breast epithelium. Genes Chrom. Cancer 10:59–65.Google Scholar
  35. 35.
    F. R. Miller, H.D. Soule, L. Tait, R. J. Pauley, S.R. Wolman, P. J. Dawson, and G. H. Heppner (1993). Xenograft model ofhuman proliferative breast disease. J. Natl. Cancer Inst. 85:1725–1732.Google Scholar
  36. 36.
    G. Calaf, Q. Tahin, M. E. Alvarado, S. Estrada, T. Cox, and J. Russo (1993). Hormone receptors and cathepsin D levels in human breast epithelial cells transformed by chemical carcinogens and c-Ha-ras transfection. Breast Cancer Res. Treat. 29:169–177.Google Scholar
  37. 37.
    P. L. Zhang, G. Calaf, and J. Russo (1994). Allele loss and point mutation in codons 12 and 61 of the c-Ha-ras oncogene in carcinogen-transformed human breast epithelial cells. Mol.Carcinogenesis 9:46–56.Google Scholar
  38. 38.
    G. Calaf and J. Russo (1993). Transformation of human breast epithelial cells by chemical carcinogens. Carcinogenesis 14:483–492.Google Scholar
  39. 39.
    T. T. Lah, G. Calaf, E. Kalman, B. G. Shinde, R. Somers, S. Estrada, E. Salero, J. Russo, and I. Daskal (1996). Cathepsins D, B, and L in transformed human breast epithelial cells. Breast Cancer Res. Treat. 39:221–233.Google Scholar
  40. 40.
    F. Ciardiello, M. Gottardis, F. Basolo, S. Pepe, N. Normanno, R.B. Dickson, A. R. Bianco, and D. S. Salomon (1992). Additive effects of c-erbB-2, c-Ha-ras, and transforming growth factor-α genes on in vitro transformation of human mammary epithelial cells. Mol.Carcinogenesis 6:43–52.Google Scholar
  41. 41.
    F. Basolo, L. Fiore, F. Ciardiello, S. Calvo, G. Fontanini, P. G. Conaldi, and A. Toniolo (1994). Response of normal and oncogene-transformed human mammary epithelial cells to transforming growth factor beta 1: Lack of growth inhibitory effect on cells expressing the simian virus 40 large-T antigen. Int. J. Cancer 56:736–742.Google Scholar
  42. 42.
    F. Ciardiello, S. Pepe, C. Bianco, G. Baldassarre, A. Ruggiero, C. Bianco, M. P. Selvam, A. R. Bianco, and G. Tortora (1993). Down-regulation of RI alpha subunit of cAMP-dependent protein kinase induces growth inhibition of human mammary epithelial cells transformed by c-Ha-ras and c-erbB-2 protooncogenes. Int. J. Cancer 53:438–443.Google Scholar
  43. 43.
    C. Bianco, G. Tortora, F. Basolo, L. Fiore, G. Fontanini, G. Merlo, D. S. Salomon, A. R. Bianco, and F. Ciardiello (1994). Effects of mutant p53 genes on transformation of human mammary epithelial cells. Int. J. Oncol. 4:1077–1082.Google Scholar
  44. 44.
    A. Moon, M. S. Kim, T. G. Kim, S. H. Kim, H. E. Kim, Y. Q. Chen, and H. R. Kim (2000). H-ras, but not N-ras, induces an invasive phenotype in human breast epithelial cells: A role for MMP-2 in the h-ras-induced invasive phenotype. Int. J. Cancer 85:176–181.Google Scholar
  45. 45.
    A. Imatani and R. Callahan (2000). Identification of a novel NOTCH-4/INT-3 RNA species encoding an activated gene product in certain human tumor cell lines. Oncogene 19:223–231.Google Scholar
  46. 46.
    F. Basolo, J. Elliott, L. Tait, X.Q. Chen, T. Maloney, I.H. Russo, R. Pauley, S. Momiki, J. Caamano, A. J. P. Klein-Szanto, M. Koszalka, and J. Russo (1991). Transformation of human breast epithelial cells by c-Ha-ras oncogene. Mol.Carcinogenesis 4:25–35.Google Scholar
  47. 47.
    P. J. Dawson, S. R. Wolman, L. Tait, G. H. Heppner, and F. R. Miller (1996). MCF10AT: A model for the evolution of cancer from proliferative breast disease. Amer. J. Pathol. 148:313–319.Google Scholar
  48. 48.
    F. R. Miller, R. J. Pauley, and B. Wang (1996). Activated c-Haras is not sufficient to produce the preneoplastic phenotype of human breast cell line MCF10AT. AntiCancer Res. 16:1765–1770.Google Scholar
  49. 49.
    S. Iravani, L. Mora, F. R. Miller, and P. J. Dawson (1998). Altered expression of c-erbB-2, DF3, B72.3, p53, and Ki-67 with progression and differentiation to two distinct histologic types of invasive carcinoma in the MCF10AT human xenograft model of proliferative breast disease. Int. J. Oncol. 12:369–375.Google Scholar
  50. 50.
    V. Kuenen-Boumeester, T. H. Van Der Kwast, H. A. Van Laarhoven, and S. C. Henzen-Logmans (1991). Ki-67 staining in histological subtypes of breast carcinoma and fine needle aspiration smears. J. Clin. Pathol. 44:208–210.Google Scholar
  51. 51.
    E. A. Dublin, R. R. Millis, P. Smith, and L. G. Bobrow (1999). Minimal breast cancer-evaluation of histology and biological marker expression. Brit. J. Cancer 80:1608–1616.Google Scholar
  52. 52.
    L. Tait, P. J. Dawson, S. R. Wolman, and F. R. Miller (1996). Multipotent human breast stem cell line MCF10AT. Int. J. Oncol. 9:263–267.Google Scholar
  53. 53.
    P. V. M. Shekhar, M. L. Chen, J. Werdell, G. H. Heppner, F. R. Miller, and J. K. Christman (1998). Transcriptional activation of functional endogenous estrogen receptor gene expression in MCF10AT cells: A model for early breast cancer. Int. J. Oncol. 13:907–915.Google Scholar
  54. 54.
    P. V. Shekhar, J. Werdell, and V. S. Basrur (1997). Environmental estrogen stimulation of growth and estrogen receptor function in preneoplastic and cancerous human breast cell lines. J. Natl. Cancer Inst. 89:1774–1782.Google Scholar
  55. 55.
    P. V. M. Shekhar, P. Nangia-Makker, S. R. Wolman, L. Tait, G. H. Heppner, and D. W. Visscher (1998). Direct action of estrogen on sequence of progression of human preneoplastic breast disease. Amer. J. Pathol. 152:1129–1132.Google Scholar
  56. 56.
    S. J. Santner, F. Miller, P. Dawson, L. Tait, H. Soule, J. Eliason, and G. Heppner (1998). MCF-10CA1 cell lines: New highly tumorigenic derivatives of the MCF-10AT system. Proc. Amer. Assoc. Cancer. Res. 39:202–203.Google Scholar
  57. 57.
    S. J. Santner, P. J. Dawson, L. Tait, H. D. Soule, J. Eliason, A.N. Mohamed, S. R. Wolman, G. H. Heppner, and F. R. Miller (2000). Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res. Treat. (in press).Google Scholar
  58. 58.
    L. B. Strickland, P. J. Dawson, S. J. Santner, and F. R. Miller (2000). Progression of premalignant MCF10AT generates heterogeneous malignant variants with characteristic histologic types and immunohistochemical markers. Breast Cancer Res. Treat. (in press).Google Scholar
  59. 59.
    B. Wang, H.D. Soule, and F. R. Miller (1997). Transforming and oncogenic potential of activated c-Ha-ras in three immortalized human breast epithelial cell lines. AntiCancer Res. 17:4387–4394.Google Scholar
  60. 60.
    D. Giunciuglio, M. Culty, G. Fassina, L. Masiello, A. Melchiori, G. Paglialunga, G. Arand, F. Ciardiello, F. Basolo, E. W. Thompson, and A. Albini (1995). Invasive phenotype of MCF10A cells overexpressing c-Ha-ras and c-erbB-2 oncogenes. Int. J. Cancer 63:815–822.Google Scholar
  61. 61.
    Y. Q. Chen, S. C. Cipriano, F. H. Sarkar, J. L. Ware, and J. M. Arenkiel (1995). p53-independent induction of p21(WAF1) pathway is preserved during tumor progression. Int. J. Oncol. 7:889–893.Google Scholar
  62. 62.
    F. Diella, N. Normanno, D. S. Merlo, and R. Callahan (1993). Absence of p53 point mutations in non transformed human mammary epithelial cell lines. Life Sci. Adv. Biochem. 12:47–51.Google Scholar
  63. 63.
    P. V. M. Shekhar, R. Welte, J. K. Christman, H. Wang, and J. Werdell (1997). Altered p53 conformation:Anovel mechanism of wild-type p53 functional inactivation in a model for early human breast cancer. Int. J. Oncol. 11:1087–1094.Google Scholar
  64. 64.
    L. M. Smith, M. J. Birrer, M. R. Stampfer, and P. H. Brown (1997). Breast cancer cells have lower activating protein 1 transcription factor activity than normal mammary epithelial cells. Cancer Res. 57:3046–3054.Google Scholar
  65. 65.
    B. E. Chong, D. M. Lubman, F. R. Miller, and A. J. Rosenspire (1999). Rapid screening of protein profiles of human breast cancer cell lines using nonporous reversed-phase high performance liquid chromatography separation with matrix-assisted laser desorption/ionization time-of-flight mass spectral analysis. Rapid. Commun. Mass. Spectrom. 13:1808–1812.Google Scholar
  66. 66.
    F. R. Miller, S. J. Santner, L. Tait, and P. J. Dawson (2000). xenograft model of human comedo ductal carcinoma in situ. J. Natl. Cancer Inst. 92:1185–1186.Google Scholar
  67. 67.
    C. Ip (1996). Mammary tumorigenesis and chemoprevention studies in carcinogen-treated rats. J. Mam. Gland Biol. Neoplasia 1:37–48.Google Scholar
  68. 68.
    K. El-Bayoumy (1992). Environmental carcinogens thatmaybe involved in human breast cancer etiology. Chem. Res. Toxicol. 5:585–590.Google Scholar
  69. 69.
    L. Anderson and J. Seilhamer (1997). Acomparison of selected mRNAand protein abundances inhumanliver. Electrophoresis 18:533–537.Google Scholar
  70. 70.
    A. Russell, M. A. Thompson, J. Hendley, L. Trute, J. Armes, and D. Germain (1999). Cyclin D1 and D3 associate with the SCF complex and are coordinately elevated in breast cancer. Oncogene 18:1983–1991.Google Scholar
  71. 71.
    M. Ozturk, S. Bolkent, S. Yilmazer, G. Kaner, and H. Unal (1998). Detection of c-erbB-2 mRNAs using diglabeled oligonucleotide probe with in situ hybridization in humanbreast carcinoma: Comparison with immunohistochemical results. Anal. Cell Pathol. 16:201–209.Google Scholar
  72. 72.
    P. V. M. Shekhar and F. R. Miller (1995). Correlation of differences in modulation of ras expression with metastatic competence of mouse mammary tumor subpopulations. Invasion Metastasis. 14:27–37.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Fred R. Miller
    • 1
  1. 1.Barbara Ann Karmanos Cancer Institute and Department of PathologyWayne State University School of MedicineDetroit

Personalised recommendations