Journal of Mammary Gland Biology and Neoplasia

, Volume 5, Issue 1, pp 107–115 | Cite as

Crosstalk Between the Insulin-Like Growth Factors and Estrogens in Breast Cancer

  • Douglas Yee
  • Adrian V. Lee


Once it was recognized that breast tumor growth was stimulated by estrogens, successfultherapeutic strategies based on depriving the tumor of this hormone were developed. Sincethe growth stimulatory properties of the estrogens are governed by the estrogen receptor (ER),4understanding the mechanisms that activate ER are highly relevant. In addition to estrogens,peptide growth factors can also activate the ER. The insulin-like growth factors (IGFs) arepotent mitogens for ER-positive breast cancer cell lines. This review will examine the evidencefor interaction between these two pathways. The IGFs can activate the ER, while ERtranscriptionally regulates genes required for IGF action. Moreover, blockade of ER function can inhibitIGF-mediated mitogenesis and interruption of IGF action can similarly inhibit estrogenicstimulation of breast cancer cells. Taken together, these observations suggest that the twogrowth regulatory pathways are tightly linked and that a further understanding of the mechanismof this crosstalk could lead to new therapeutic strategies in breast cancer.

Breast cancer insulin-like growth factors estrogen receptor signal transduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. C. Jordan (1996). Tamoxifen, A Guide for Clinicans and Patients, PRR, Huntington, New York.Google Scholar
  2. 2.
    V. C. Jordan (1999). Estrogen receptor as a target for the prevention of breast cancer. J. Lab. Clin. Med. 133:408–414.Google Scholar
  3. 3.
    D. J. Mangelsdorf, C. Thummel, M. Beato, P. Herrlich, G. Schutz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon (1995). The nuclear receptor superfamily: The second decade. Cell 83:835–839.Google Scholar
  4. 4.
    G. G. Kuiper, E. Enmark, M. Pelto-Huikko, S. Nilsson, and J. A. Gustafsson (1996). Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. U.S.A. 93:5925–5930.Google Scholar
  5. 5.
    L. A. Paige, D. J. Christensen, H. Gron, J. D. Norris, E. B. Gottlin, K. M. Padilla, C. Y. Chang, L. M. Ballas, P. T. Hamil ton, D. P. McDonnell, and D. M. Fowlkes (1999). Estrogen receptor (ER) modulators each induce distinct conformational changes in ER alpha and ER beta. Proc. Natl. Acad. Sci. U.S.A. 96:3999–4004.Google Scholar
  6. 6.
    H. Shibata, T. E. Spencer, S. A. Onate, G. Jenster, S. Y. Tsai, M. J. Tsai, and B. W. O'Malley (1997). Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog. Horm. Res. 52:141–164.Google Scholar
  7. 7.
    M. G. Parker (1998). Transcriptional activation by oestrogen receptors. Biochem. Soc. Symp. 63:45–50.Google Scholar
  8. 8.
    M. D. PlanasSilva and R. A. Weinberg (1997). Estrogen-dependent cyclin E-cdk2 activation through p21 redistribution. Mol. Cell. Biol. 17:4059–4069.Google Scholar
  9. 9.
    R. F. Power, S. K. Mani, J. Codina, O. M. Conneely, and B.W. O'Malley (1991). Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 254: 1636–1639.Google Scholar
  10. 10.
    D. M. Ignar-Trowbridge, K. G. Nelson, M. C. Bidwell, S. W. Curtis, T. F. Washburn, J. A. McLachlan, K. S. Korach (1992). Coupling of dual signaling pathways: Epidermal growth factor action involves the estrogen receptor. Proc. Natl. Acad. Sci. U.S.A. 89:4658–4662.Google Scholar
  11. 11.
    D. M. Ignar-Trowbridge, M. Pimentel, M. G. Parker, J. A. McLachlan, and K. S. Korach (1996). Peptide growth factor cross-talk with the estrogen receptor requires the A/B domain and occurs independently of protein kinase C or estradiol. Endocrinology 137:1735–1744.Google Scholar
  12. 12.
    D. M. Ignar-Trowbridge, C. T. Teng, K. A. Ross, M. G. Parker, K. S. Korach, and J. A. McLachlan (1993). Peptide growth factors elicit estrogen receptor-dependent transcriptional activation of an estrogen-responsive element. Mol. Endocrinol. 7:992–998.Google Scholar
  13. 13.
    H. S. Cho, S. M. Aronica, and B. S. Katzenellenbogen (1994). Regulation of progesterone receptor gene expression in MCF-7 breast cancer cells—a comparison of the effects of cyclic adenosine 3',5'-monophosphate, estradiol, insulin-like growth factor-I, and serum factors. Endocrinology 134:658–664.Google Scholar
  14. 14.
    B. S. Katzenellenbogen and M. J. Norman (1990). Multihor monal regulation of the progesterone receptor in MCF-7 human breast cancer cells: Interrelationships among insulin/insulin-like growth factor-I, serum, and estrogen. Endocrinology 126:891–898.Google Scholar
  15. 15.
    B. S. Katzenellenbogen (1996). Estrogen receptors: Bioactivities and interactions with cell signaling pathways. Biol. Reprod. 54:287–293.Google Scholar
  16. 16.
    C. Patrone, Z. Q. Ma, G. Pollio, P. Agrati, M. G. Parker, and A. Maggi (1996). Cross-coupling between insulin and estrogen receptor in human neuroblastoma cells. Mol. Endocrinol. 10:499–507.Google Scholar
  17. 17.
    M. L. Panno, M. Salerno, V. Pezzi, D. Sisci, M. Maggiolini, L. Mauro, E. G. Morrone, and S. Ando (1996). Effect of oestra diol and insulin on the proliferative pattern and on oestrogen and progesterone receptor contents in MCF-7 cells. J. Cancer Res. Clin. Oncol. 122:745–749.Google Scholar
  18. 18.
    A. V. Lee, C. N. Weng, J. G. Jackson, and D. Yee (1997). Activation of estrogen receptor-mediated gene transcription by IGF-I in human breast cancer cells. J. Endocrinol. 152:39–47.Google Scholar
  19. 19.
    A. V. Lee, J. G. Jackson, J. G. Gooch, S. G. Hilsenbeck, E. Coronado-Heinsohn, C. K. Osborne, and D. Yee (1999). Enhancement of the insulin-like growth factor pathway by estrogen in human breast cancer cells. Mol. Endocrinol. 13:787–796.Google Scholar
  20. 20.
    G. Freiss, C. Puech, and F. Vignon (1998). Extinction of insulin-like growth factor-I mitogenic signaling by antiestrogen-stimulated Fas-associated protein tyrosine phosphatase-1 in human breast cancer cells. Mol. Endocrinol. 12:568–579.Google Scholar
  21. 21.
    M. Salerno, D. Sisci, L. Mauro, M. A. Guvakova, S. Ando, and E. Surmacz (1999). Insulin receptor substrate 1 is a target for the pure antiestrogen ICI 182,780 in breast cancer cells. Int. J. Cancer 81:299–304.Google Scholar
  22. 22.
    M. A. Guvakova and E. Surmacz (1997). Tamoxifen interferes with the insulin-like growth factor I receptor (IGF-IR) signaling pathway in breast cancer cells. Cancer Res. 57:2606–2610.Google Scholar
  23. 23.
    G. Freiss, H. Rochefort, and F. Vignon (1990). Mechanisms of 4-hydroxytamoxifen anti-growth factor activity in breast cancer cells: Alterations of growth factor receptor binding sites and tyrosine kinase activity. Biochem. Biophys. Res. Com mun. 173:919–926.Google Scholar
  24. 24.
    M. K. El-Tanani and C. D. Green (1997). Two separate mecha-nisms for ligand-independent activation of the estrogen receptor. Mol. Endocrinol. 11:928–937.Google Scholar
  25. 25.
    S. F. Arnold, J. D. Obourn, H. Jaffe, and A. C. Notides (1994). Serine 167 is the major estradiol-induced phosphorylation site on the human estrogen receptor. Mol. Endocrinol. 8:1208–1214.Google Scholar
  26. 26.
    S. Ali, D. Metzger, J. M. Bornert, and P. Chambon (1993). Modulation of transcriptional activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B region. EMBO J. 12:1153–1160.Google Scholar
  27. 27.
    P. Le Goff, M. M. Montano, D. J. Schodin, and B. S. Katzenellenbogen (1994). Phosphorylation of the human estrogen recep tor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J. Biol. Chem. 269:4458–4466.Google Scholar
  28. 28.
    S. Kato, H. Endoh, Y. Masuhiro, T. Kitamoto, S. Uchiyama, H. Sasaki, S. Masushige, Y. Gotoh, E. Nishida, H. Kawashima, D. Metzger, and P. Chambon (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494.Google Scholar
  29. 29.
    G. Bunone, P. A. Briand, R. J. Miksicek, and D. Picard (1996). Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 15:2174–2183.Google Scholar
  30. 30.
    S. M. Aronica and B. S. Katzenellenbogen (1993). Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclic adenosine monophosphate, and insulin-like growth factor-I. Mol. Endocrinol. 7:743–752.Google Scholar
  31. 31.
    C. Patrone, E. Gianazza, S. Santagati, P. Agrati, and A. Maggi (1998). Divergent pathways regulate ligand-independent activation of ER alpha in SK-N-BE neuroblastoma and COS-1 renal carcinoma cells. Mol. Endocrinol. 12:835–841.Google Scholar
  32. 32.
    G. B. Tremblay, A. Tremblay, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, F. Labrie, and V. Giguere (1997). Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor beta. Mol. Endocrinol. 11:353–365.Google Scholar
  33. 33.
    P. Webb, P. Nguyen, J. Shinsako, C. Anderson, W. Feng, M. P. Nguyen, D. Chen, S. M. Huang, S. Subramanian, E. McKinerney, B. S. Katzenellenbogen, M. R. Stallcup, and P. J. Kushner (1998). Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol. Endocrinol. 12:1605–1618.Google Scholar
  34. 34.
    Z. Q. Ma, S. Santagati, G. Patrone, G. Pollio, E. Vegeto, and A. Maggi (1994). Insulin-like growth factors activate estrogen receptor to control the growth and differentiation of the human insulinneuroblastoma cell line SK-ER3. Mol. Endocrinol. 8:910–918.Google Scholar
  35. 35.
    C. Patrone, Z. Q. Ma, S. Santagati, E. Vegeto, and A. Maggi (1995). Ras mediates the insulin-depenedent activation of the unliganded estrogen receptor in human neuroblastoma cells. Progr. 77th Ann. Meeting of the Endocrine Society, Washington, D.C. (Abstract) p. 1–469.Google Scholar
  36. 36.
    R. M. Zwijsen, E. Wientjens, R. Klompmaker, J. van der Sman, R. Bernards, and R. J. Michalides (1997). CDK-independent activation of estrogen receptor by cyclin D1. Cell 88:405–415.Google Scholar
  37. 37.
    E. Neuman, M. H. Ladha, N. Lin, T. M. Upton, S. J. Miller, J. DiRenzo, R. G. Pestell, P.W. Hinds, S. F. Dowdy, M. Brown, and M. E. Ewen (1997). Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol. Cell. Biol. 17:5338–5347.Google Scholar
  38. 38.
    R. M. Zwijsen, R. S. Buckle, E. M. Hijmans, C. J. Loomans, and R. Bernards (1998). Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1. Genes Dev. 12:3488–3498.Google Scholar
  39. 39.
    C. McMahon, T. Suthiphongchai, J. DiRenzo, and M. E. Ewen (1999). P/CAF associates with cyclin D1 and potentiates its activation of the estrogen receptor. Proc. Natl. Acad. Sci. U.S.A. 96:5382–5387.Google Scholar
  40. 40.
    B. Dufourny, J. Albas, H. A. van Teefelen, F. M. van Schaik, B. van der Burg, and P. H. Steenbergh, J. S. Sussenbach (1997). Mitogenic signaling of insulin-like growth factor I in MCF-7 human breast cancer cells requires phosphatidylinositol 3-kinase and is independent of mitogen-activated protein kinase. J. Biol. Chem. 272:31163–31171.Google Scholar
  41. 41.
    W. Ruan, R. Catanese, R. Wieczorek, M. Feldman, and D. L. Kleinberg (1995). Estradiol enhances the stimulatory effect of insulin-like growth factor-I (IGF-I) on mammary development and growth-hormone-induced IGF-I messenger ribonucleic acid. Endocrinology 136:1296–1302.Google Scholar
  42. 42.
    R. G. Richards, R. P. DiAugustine, P. Petrusz, G. C. Clark, and J. Sebastian (1996). Estradiol stimulates tyrosine phosphor ylation of the insulin-like growth factor-1 receptor and insulin receptor substrate-1 in the uterus. Proc. Natl. Acad. Sci. U.S.A. 93:12002–12007.Google Scholar
  43. 43.
    D. Kleinman, M. Karas, C. T. Roberts, Jr., D. LeRoith, M. Phillip, Y. Segev, J. Levy, and Y. Sharoni (1995). Modulation of insulin-like growth factor I (IGF-I) receptors and membrane-associated IGF-binding proteins in endometrial cancer cells by estradiol. Endocrinology 136:2531–2537.Google Scholar
  44. 44.
    A. Stewart, B. Westley, and F. May (1992). Modulation of the proliferative response of breast cancer cells to growth factors by oestrogen. Brit. J. Cancer 66:640–648.Google Scholar
  45. 45.
    B. Katzenellenbogen, and M. J. Norman (1990). Multihormonal regulation of the progesterone receptor in MCF-7 human breast cancer cells: Interrelationships among insulin/insulin-like growth factor-I, serum, and estrogen. Endocrinology 126: 891–898.Google Scholar
  46. 46.
    A. E. Wakeling, E. Newboult, and S. W. Peters (1989). Effects of antioestrogens on the proliferation of MCF-7 human breast cancer cells. J. Mol. Endocrinol. 2:225–234.Google Scholar
  47. 47.
    A. V. Lee, P. Darbre, and R. J. King (1994). Processing of insulin-like growth factor-II (IGF-II) by human breast cancer cells. Mol. Cell. Endocrinol. 99:211–220.Google Scholar
  48. 48.
    C. K. Osborne, E. B. Coronado, L. J. Kitten, C. I. Arteaga, S. A. W. Fuqua, K. Ramasharma, M. Marshall, and C. H. Li (1989). Insulin-like growth factor-II (IGF-II): A potential autocrine/paracrine growth factor for human breast cancer acting via the IGF-I receptor. Mol. Endocrinol. 3:1701–1709.Google Scholar
  49. 49.
    D. Yee, K. Cullen, S. Paik, J. Perdue, B. Hampton, A. Schwartz, M. Lippman, and N. Rosen (1988). Insulin-like growth factor II mRNA expression in human breast cancer. Cancer Res. 48:6691–6696.Google Scholar
  50. 50.
    M. Mathieu, F. Vignon, F. Capony, and H. Rochefort (1991). Estradiol down-regulates the mannose-6-phosphate/insulinneuroblastoma like growth factor-II receptor gene and induces cathepsin-D in breast cancer cells:Areceptor saturation mechanism to increase the secretion of lysosomal proenzymes. Mol. Endocrinol. 5:815–822.Google Scholar
  51. 51.
    W. McGuire, Jr., J. G. Jackson, J. A. Figueroa, S. A. Shimasaki, D. R. Powell, and D. Yee (1992). Regulation of insulin-like growth factor-binding protein (IGFBP) expression by breast cancer cells: Use of IGFBP-1 as an inhibitor of insulin-like growth factor action. J. Natl. Cancer Inst. 84:1336–1341.Google Scholar
  52. 52.
    A. V. Lee, J. G. Jackson, J. L. Gooch, S. G. Hilsenbeck, E. Coronado-Heinsohn, C. K. Osborne, and D. Yee (1999). Enhancement of insulin-like growth factor signaling in human breast cancer: Estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo. Mol. Endocrinol. 13:787–796.Google Scholar
  53. 53.
    R. G. Richards, M. P. Walker, J. Sebastian, and R. P. DiAugus tine (1998). Insulin-like growth factor-1 (IGF-1) receptor-insulin receptor substrate complexes in the uterus. Altered signaling response to estradiol in the IGF-1(m/m) mouse. J. Biol. Chem. 273:11962–11969.Google Scholar
  54. 54.
    X. F. Yang, W. G. Beamer, H. Huynh, and M. Pollak (1996). Reduced growth of human breast cancer xenografts in hosts homozygous for the lit mutation. Cancer Res. 56:1509–1511.Google Scholar
  55. 55.
    S. E. Hankinson, W. C. Willett, G. A. Colditz, D. J. Hunter, D. S. Michaud, B. Deroo, B. Rosner, F. E. Speizer, and M. Pollak (1998). Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 351:1393–1396.Google Scholar
  56. 56.
    M. N. Pollak (1998). Endocrine effects of IGF-I on normal and transformed breast epithelial cells: Potential relevance to strategies for breast cancer treatment and prevention. Breast Cancer Res. Treat. 47:209–217.Google Scholar
  57. 57.
    R. L. Rocha, S. G. Hilsenbeck, J. G. Jackson, C. L. van den Berg, C-N. Weng, A. V. Lee, and D. Yee (1997). Insulin-like growth factor binding protein-3 and insulin receptor substrateand 1 in breast cancer: correlation with clinical parameters and disease-free survival. Clin. Cancer Res. 3:103–109.Google Scholar
  58. 58.
    H. Huynh, X. Yang, and M. Pollak (1996). Estradiol and anties-trogens regulate a growth inhibitory insulin-like growth factor-binding protein 3 autocrine loop in human breast cancer cells. J. Biol. Chem. 271:1016–1021.Google Scholar
  59. 59.
    J. A. Figueroa, J. G. Jackson, W. L. McGuire, R. F. Krywicki, and D. Yee (1993). Expression of insulin-like growth factor binding proteins in human breast cancer correlates with estro gen receptor status. J. Cell Biochem. 52:196–205.Google Scholar
  60. 60.
    G. Freiss, H. Rochefort, and F. Vignon (1990). Mechanisms of 4-hydroxytamoxifen anti-growth factor activity in breast cancer cells: Alterations of growth factor receptor binding sites and tyrosine kinase activity. Biochem. Biophys. Res. Com mun. 3:919–926.Google Scholar
  61. 61.
    G. Freiss and F. Vignon (1994). Antiestrogens increase protein tyrosine phosphatase activity in human breast cancer cells. Mol. Endocrinol. 8:1389–1396.Google Scholar
  62. 62.
    R. Daly, W. Harris, D. Wang, and P. Darbre (1991). Autocrine production of insulin like growth factor-II using an inducible expression system results in reduced estrogen sensitivity of MCF-7 human breast cancer cells. Cell Growth Differ. 2:457–464.Google Scholar
  63. 63.
    K. Cullen, M. Lippman, D. Chow, S. Hill, N. Rosen, and J. Zwiebel (1992). Insulin-like growth factor-II over expression in MCF-7 cells induces phenotypic chances associated with malignant progression. Mol. Endocrinol. 6:91–100.Google Scholar
  64. 64.
    A. V. Lee, M. Toi, and D. Yee (1994). Tamoxifen resistant MCF-7 cells exhibit increased expression of insulin-like growth factor-II. Breast Cancer Res. Treat. 32S:57.Google Scholar
  65. 65.
    L. R. Wiseman, M. D. Johnson, A. E. Wakeling, A. E. Lykkesfeldt, F. E. May, and B. R. Westley (1993). Type I IGF receptor and acquired tamoxifen resistance in oestrogen-responsive human breast cancer cells. Eur. J. Cancer 29A:2256–2264.Google Scholar
  66. 66.
    M. A. Guvakova and E. Surmacz (1997). Overexpressed IGFI receptors reduce estrogen growth requirements, enhance sur vival, and promote E-cadherin-mediated cell-cell adhesion in human breast cancer cells. Exper. Cell Res. 231:149–162.Google Scholar
  67. 67.
    M. R. Daws, B. R. Westley, and F. E. May (1996). Paradoxical effects of overexpression of the type I insulin-like growth factor (IGF) receptor on the responsiveness of human breast cancer cells to IGFs and estradiol. Endocrinology 137:1177–1186.Google Scholar
  68. 68.
    E. Surmacz and J-L. Burgard (1995). Overexpression of IRS-1 in the human breast cancer cell line MCF-7 induces loss of estrogen requirements for growth and transformation. Clin. Cancer Res. 1:1429–1436.Google Scholar
  69. 69.
    D. McCotter, H.W. van den Berg, M. Boylan, and B. McKibben (1996). Changes in insulin-like growth factor-I receptor expression and binding protein secretion associated with tamoxifen resistance and estrogen independence in human breast cancer cells in vitro. Cancer Lett. 99:239–245.Google Scholar
  70. 70.
    M. K. Dougherty, L. M. Schumaker, V. C. Jordan, and M. J. C. Ellis (1999). Status of the insulin-like growth factor network in an estrogen receptor negative T47D breast cancer cell clone. Proc. AACR 40:4042.Google Scholar
  71. 71.
    A. V. Lee, R. L. Guler, S. Oesterrecih, L. A. de Graffenreid, S. A. Fuqua, E. M. Curran, W. V. Welshons (1999). Loss of estrogen receptor in MCF-7 breast cancer cells is associated with reduced IGFR1 and IRS-1 expression, diminished IGF signaling, and a failure to respond mitogenically to IGFs. Proc. Endocrine Society, 81st Ann. Meeting, p. 478.Google Scholar
  72. 72.
    R. P. DiAugustine, P. Petrusz, G. I. Bell, C. F. Brown, K. S. Korach, J. A. McLachlan, C. T. Teng (1988). Influence of estrogens on mouse uterine epidermal growth factor precursor protein and messenger ribonucleic acid. Endocrinology 122:2355–2363.Google Scholar
  73. 73.
    Y. M. Huet-Hudson, C. Chakraborty, S. K. De, Y. Suzuki, G. K. Andrews, and S. K. Dey (1990). Estrogen regulates the synthesis of epidermal growth factor in mouse uterine epithelial cells. Mol. Endocrinol. 4:510–523.Google Scholar
  74. 74.
    L. J. Murphy, L. C. Murphy, and H. G. Friesen (1987). Estrogen induces insulin-like growth factor-I expression in the rat uterus. Mol. Endocrinol. 1:445–450.Google Scholar
  75. 75.
    A. Ghahary and L. J. Murphy (1989). Uterine insulin-like growth factor-I receptors: Regulation by estrogen and variation throughout the estrous cycle. Endocrinology 125:597–604.Google Scholar
  76. 76.
    K. G. Nelson, T. Takahashi, N. L. Bossert, D. K. Walmer, and J. A. McLachlan (1991). Epidermal growth factor replaces estrogen in the stimulation of female genital-tract growth and differentiation. Proc. Natl. Acad. Sci. U.S.A. 88:21–25.Google Scholar
  77. 77.
    S.W. Curtis, T. Washburn, C. Sewall, R. DiAugustine, J. Lindzey, J. F. Couse, and K. S. Korach (1996). Physiological cou pling of growth factor and steroid receptor signaling pathways: Estrogen receptor knockout mice lack estrogen-like response to epidermal growth factor. Proc. Natl. Acad. Sci. U.S.A. 93:12626–12630.Google Scholar
  78. 78.
    K. Rajkumar, T. Dheen, M. Krsek, and L. J. Murphy (1996). Impaired estrogen action in the uterus of insulin-like growth factor binding protein-1 transgenic mice. Endocrinology 137:1258–1264.Google Scholar
  79. 79.
    C. Sell, G. Dumenil, C. Deveaud, M. Miura, D. Coppola, T. DeAngelis, R. Rubin, A. Efstratiadis, R. Baserga (1994). Effect of a null mutation of the type 1 IGF receptor gene on growth and transformation of mouse embryo fibroblasts. Mol. Cell Biol. 14:3604–3612.Google Scholar
  80. 80.
    C. L. van den Berg, C. Stroh, S. G. Hilsenbeck, C-N. Weng, M. J. McDermott, G. N. Cox, and D. Yee (1997). Polyetheylene glycol conjugated insulin-like growth factor binding protein inhibits growth of breast cancer in athymic mice. Eur. J. Cancer 33:1108–1113.Google Scholar
  81. 81.
    J. A. Figueroa, J. Sharma, J. G. Jackson, M. J. McDermott, S. G. Hilsenbeck, D. Yee (1993). Recombinant insulin-like growth factor binding protein-1 inhibits IGF-I, serum, and estrogen-dependent growth of MCF-7 human breast cancer cells. J. Cell. Physiol. 157:229–236.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Douglas Yee
    • 1
  • Adrian V. Lee
    • 2
  1. 1.Department of MedicineUniversity of Minnesota Cancer CenterMinneapolis
  2. 2.Baylor Breast CenterBaylor College of MedicineHouston

Personalised recommendations