Journal of Mammary Gland Biology and Neoplasia

, Volume 6, Issue 1, pp 101–113 | Cite as

The Ras Signaling Pathway in Mammary Tumorigenesis and Metastasis



The Ras superfamily of GTPases act as important regulatory switches to co-ordinate extracellular stimuli with activation of intracellular signaling pathways and appropriate biological responses. The Ras branch of this superfamily includes H-, K- and N-Ras, which are commonly mutated in particular human cancers, but notably not in those of the breast. Instead, in breast cancer the signaling pathways involving these GTPases may be upregulated due to increased coupling to growth factor receptors or other tyrosine kinases commonly overexpressed in this disease, or increased expression of regulators, the Ras protein itself, or downstream effectors. Functional studies utilizing both in vitro and in vivo models demonstrate that Ras signaling can regulate a variety of endpoints relevant to breast cancer progression, including anchorage dependent and independent growth, tumorigenesis, steroid sensitivity and invasion. Finally, analysis of the processing and signaling mechanisms of the Ras superfamily has identified potential targets for therapeutic intervention.

breast cancer Ras MAP kinase Erks tumorigenesis metastasis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Barbacid (1987). Ras genes. Ann. Rev. Biochem. 56:779–827.Google Scholar
  2. 2.
    M. Boguski and F. McCormick (1993). Proteins regulating ras and its relatives. Nature 366:643–654.Google Scholar
  3. 3.
    L. van Aelst and C. D'souza-Schorey (1997). Rho GTPases and signaling networks. Genes Dev. 11:2295–2322.Google Scholar
  4. 4.
    G. Reuther and C. Der (2000). The Ras branch of small GTPases: Ras family members don't fall far from the tree. Curr. Opinion Cell Biol. 12:157–165.Google Scholar
  5. 5.
    G. Clark, M. Kinch, T. Gilmer, K. Burridge, and C. Der (1996). Overexpression of the Ras-related TC21/R-Ras2 protein may contribute to the development of human breast cancers. Oncogene 12:169–176.Google Scholar
  6. 6.
    K. Barker and M. Crompton (1998). Ras-related TC21 is activated by mutation in a breast cancer cell line, but infrequently in breast carcinomas in vivo. Brit. J. Cancer 78:296–300.Google Scholar
  7. 7.
    T. Pawson (1995). Protein modules and signaling networks. Nature 373:573–580.Google Scholar
  8. 8.
    A. Migliaccio, M. Di Domenico, G. Castoria, A. de Falco, P. Bontempo, E. Nola, and F. Auricchio (1996). Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiolreceptor complex in MCF-7 cells. EMBO J. 15:1292–1300.Google Scholar
  9. 9.
    S. Campbell, R. Khosravi-Far, K. Rossman, G. Clark, and C. Der (1998). Increasing complexity of Ras signaling. Oncogene 17:1395–1413.Google Scholar
  10. 10.
    R. Seger and E. Krebs (1995). The MAPK signaling cascade. FASEB J. 9:726–735.Google Scholar
  11. 11.
    M. P. Scheid and J. R. Woodgett (2000). Phosphatidylinositol 3′ kinase signaling in mammary tumorigenesis. J. Mam. Gland Biol. Neoplasia 6(1) xx–xx.Google Scholar
  12. 12.
    J. L. Bos (1989). Ras oncogenes in human cancer: A review. Cancer Res. 49:4682–4689.Google Scholar
  13. 13.
    S. Miyakis, G. Sourvinos, and D. Spandidos (1998). Differential expression and mutation of the ras family genes inhumanbreast cancer. Biochem. Biophys. Res. Commun. 251:609–612.Google Scholar
  14. 14.
    M. Kraus, Y. Yuasa, and S. Aaronson (1984). A position 12-activated H-ras oncogene in all HS578T mammary carcinosarcoma cells but not normal mammary cells of the same patient. Proc. Natl. Acad. Sci. U.S.A. 81:5384–5388.Google Scholar
  15. 15.
    S. Kozma, M. Bogaard, K. Buser, S. Saurer, J. Bos, B. Groner, and N. Hynes (1987). The human c-Kirsten ras gene is activated by a novel mutation in codon 13 in the breast carcinoma cell line MDA-MB-231. Nucleic Acids Res. 15:5963–5971.Google Scholar
  16. 16.
    D. Watson, R. Elton, W. Jack, J. Dixon, U. Chetty, and W. Miller (1990). The H-ras oncogene product p21 and prognosis in human breast cancer. Breast Cancer Res. Treat. 17:161–169.Google Scholar
  17. 17.
    C. Dati, R. Muraca, O. Tazartes, S. Antoniotti, I. Perroteau, M. Giai, P. Cortese, P. Sismondi, G. Saglio, and M. De Bertoli (1991). c-erbB-2 and ras expression levels in breast cancer are correlated and show a co-operative association with unfavorable clinical outcome. Int. J. Cancer 47:833–838.Google Scholar
  18. 18.
    U.-J. Gohring, T. Schondorf, V. Kiecker, M. Becker, C. Kurbacher, and A. Scharl (1999). Immunohistochemical detection of H-ras protooncoprotein p21 indicates favorable prognosis in node-negative breast cancer patients. Tumor Biol. 20:173–183.Google Scholar
  19. 19.
    A. Schnelzer, D. Prechtel, U. Knaus, K. Dehne, M. Gerhard, H. Graeff, N. Harbeck, M. Schmitt, and E. Lengyel (2000). Rac1 in human breast cancer: Overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 19:3013–3020.Google Scholar
  20. 20.
    K. L. Troyer and D. C. Lee (2001). Regulation of mouse mammary gland development and tumorigenesis by the ERBB Signaling network. J. Mam. Gland Biol. Neoplasia 6(1) xx-xx.Google Scholar
  21. 21.
    J. R. Sainsbury, J. R. Farndon, G. K. Needham, A. J. Malcolm, and A. L. Harris (1987). Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet 1:1398–1402.Google Scholar
  22. 22.
    D. J. Slamon, W. Godolphin, L. A. Jones, J.A. Holt, S.G. Wong, D. E. Keith, W. J. Levin, S. G. Stuart, J. Udove, A. Ullrich, and M. F. Press (1989). Studies of the HER2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712.Google Scholar
  23. 23.
    P.W. Janes, R. J. Daly, A. deFazio, and R. L. Sutherland (1994). Activation of the Ras signaling pathway in human breast cancer cell lines overexpressing erbB-2. Oncogene 9:3601–3608.Google Scholar
  24. 24.
    V. Papa, V. Pezzino, A. Costantino, A. Belfiore, D. Giuffrida, L. Frittitta, G. Vannelli, R. Brand, I. Goldfine, and R. Vigneri (1990). Elevated insulin receptor content in human breast cancer. J. Clin. Invest. 86:1503–1510.Google Scholar
  25. 25.
    J. Resnik, D. Riechart, K. Huey, N. Webster, and B. Seely (1998). Elevated insulin-like growth factor I receptor autophosphorylation and kinase activity in human breast cancer. Cancer Res. 58:1159–1164.Google Scholar
  26. 26.
    A. E. Ottenhoff-Kalff, G. Rijksen, E. A. C. M. van Beurden, A. Hennipman, A. A. Michels, and G. E. J. Staal (1992). Characterization of protein tyrosine kinases from human breast cancer: Involvement of the c-src oncogene product. Cancer Res. 52:4773–4778.Google Scholar
  27. 27.
    R. Kairouz, and R. Daly (2000). Modulation of tyrosine kinase signaling in breast cancer through altered expression of signaling intermediates. Breast Cancer Res. 2:197–202.Google Scholar
  28. 28.
    R. J. Daly, M. D. Binder, and R. L. Sutherland (1994). Overexpression of the Grb2 gene in human breast cancer cell lines. Oncogene 9:2723–2727.Google Scholar
  29. 29.
    B. Verbeek, S. Adriaansen-Slot, G. Rijksen, and T. Vroom (1997). Grb2 overexpression in nuclei and cytoplasm of human breast cells: A histochemical and biochemical study of normal and neoplastic mammary tissue specimens. J. Pathol. 183:195–203.Google Scholar
  30. 30.
    S. Yip, A. Crew, J. Gee, R. Hui, R. Blamey, J. Robertson, R. Nicholson, R. Sutherland, and R. Daly (2000). Upregulation of the protein tyrosine phosphatase SHP-1 in human breast cancer and correlation with GRB2 expression. Int. J. Cancer 88:363–368.Google Scholar
  31. 31.
    E. Y. Skolnik, A. Batzer, N. Li, C.-H. Lee, E. Lowenstein, M. Mohammadi, B. Margolis, and J. Schlessinger (1993). The function of GRB2 in linking the insulin receptor to ras signaling pathways. Science 260:1953–1955.Google Scholar
  32. 32.
    N. W. Gale, S. Kaplan, E. J. Lowenstein, J. Schlessinger, and D. Bar-Sagi (1993). Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on ras. Nature 363:88–92.Google Scholar
  33. 33.
    K. L. Suen, X. R. Bustelo, T. Pawson, and M. Barbacid (1993). Molecular cloning of the mouse grb2 gene: Differential expression of the Grb2 adaptor protein with epidermal growth factor and nerve growth factor receptors. Mol. Cell. Biol. 13:5500–5512.Google Scholar
  34. 34.
    M. Rauh, V. Blackmore, E. Andrechek, C. Tortorice, R. Daly, V. Lai, T. Pawson, R. Cardiff, P. Siegel, and W. Muller (1999). Accelerated mammary tumor development in mutant polyomavirus middle T transgenic mice expressing elevated levels of either the Shc or Grb2 adapter protein. Mol. Cell. Biol. 19:8169–8179.Google Scholar
  35. 35.
    V. Sivaraman, H. Wang, G. Nuovo, and C. Malbon (1997). Hyperexpression of mitogen-activated protein kinase in human breast cancer. J. Clin. Invest. 99:1478–1483.Google Scholar
  36. 36.
    C. Wang, A. Thor, D. Moore, Y. Zhao, R. Kerschmann, R. Stern, P. Watson, and E. Turley (1998). The overexpression of RHAMM, a hyaluronan-binding protein that regulates Ras signaling, correlates with overexpression of mitogen-activated protein kinase and is a significant parameter in breast cancer progression. Clin. Cancer Res. 4:567–576.Google Scholar
  37. 37.
    S. Redmond, E. Reichmann, R. Muller, R. Friis, B. Groner, and N. Hynes (1988). The transformation of primary and established mouse mammary epithelial cells by p21-ras is concentration dependent. Oncogene 2:259–265.Google Scholar
  38. 38.
    W. Gunzberg, B. Salmons, A. Schlaeffli, S. Moritz-Legrand, W. Jones, N. Sarkar, and R. Ullrich (1988). Expression of the oncogenes mil and ras abolishes the in vivo differentiation of mammary epithelial cells. Carcinogenesis 9:1849–1856.Google Scholar
  39. 39.
    R. Clark, M. Stampfer, R. Milley, E. O'Rourke, K. Walen, M. Kriegler, J. Kopplin, and F. McCormick (1988). Transformation of human mammary epithelial cells by oncogenic retroviruses. Cancer Res. 48:4689–4694.Google Scholar
  40. 40.
    J. Ochieng, F. Basolo, A. Albini, A. Melchiori, H. Watanabe, J. Elliott, A. Raz, S. Parodi, and J. Russo (1991). Increased invasive, chemotactic, and locomotive abilities of c-Ha-rastransformed human breast epithelial cells. Invasion and metastasis 11:38–47.Google Scholar
  41. 41.
    F. Ciardiello, M. Gottardis, F. Basolo, S. Pepe, N. Normanno, R. Dickson, A. Bianco, and D. Salomon (1992). Additive effects of c-erbB-2, c-Ha-ras, and transforming growth factor-alpha genes on in vitro transformation of human mammary epithelial cells. Mol. Carcinogenesis 6:43–52.Google Scholar
  42. 42.
    S. Sukumar, W. Carney, and M. Barbacid (1988). Independent molecular pathways in initiation and loss of hormone responsiveness of breast carcinomas. Science 240:524–526.Google Scholar
  43. 43.
    C. Sommers, A. Papageorge, G. Wilding, and E. Gelmann (1990). Growth properties and tumorigenesis of MCF-7 cells transfected with isogenic mutants of rasH. Cancer Res. 50:67–71.Google Scholar
  44. 44.
    D. El-Ashry, D. Miller, S. Kharbanda, M. Lippman, and F. Kern (1997). Constitutive Raf-1 kinase activity in breast cancer cells induces both estrogen-independent growth and apoptosis. Oncogene 15:423–435.Google Scholar
  45. 45.
    A. Tremblay, G. Tremblay, F. Labrie, and V. Giguere (1999). Ligand-independent recruitment of SRC-1 to estrogen receptor beta through phosphorylation of activation function AF-1. Mol. Cell 3:513–519.Google Scholar
  46. 46.
    J. Font de Mora and M. Brown (2000). AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol. Cell. Biol. 20:5041–5047.Google Scholar
  47. 47.
    A. Coutts and L. Murphy (1998). Elevated mitogen-activated protein kinase activity in estrogen-nonresponsivehumanbreast cancer cells. Cancer Res. 58:4071–4074.Google Scholar
  48. 48.
    E. Sinn, W. Muller, P. Pattengale, I. Tepler, R. Wallace, and P. Leder (1987). Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: Synergistic action of oncogenes in vivo. Cell 49:465–475.Google Scholar
  49. 49.
    A. Andres, C. Schonenberger, B. Groner, L. Henninghausen, M. LeMeur, and P. Gerlinger (1987). Ha-ras oncogene expression directed by a milk protein gene promoter: Tissue specificity, hormonal regulation, and tumor induction in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 84:1299–1303.Google Scholar
  50. 50.
    A. Andres, O. Bchini, B. Schubaur, B. Dolder, M. LeMeur, and P. Gerlinger (1991). H-ras induced transformation of mammary epithelium is favored by increased oncogene expression or by inhibition of mammary regression. Oncogene 6:771–779.Google Scholar
  51. 51.
    L. Nielsen, C. Discafani, M. Gurnani, and R. Tyler (1991). Histopathology of salivary and mammary gland tumors in transgenic mice expressing a human Ha-ras oncogene. Cancer Res. 51:3762–3767.Google Scholar
  52. 52.
    H. Zarbl, S. Sukumar, A. Arthur, D. Martin-Zanca, and M. Barbacid (1985). Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature 315:382–385.Google Scholar
  53. 53.
    C. Schoenenberger, A.-C. Andres, B. Groner, M. van der Valk, M. LeMeur, and P. Gerlinger (1988). Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumors with constitutive milk protein gene transcription. EMBO J. 7:169–175.Google Scholar
  54. 54.
    P. Tremblay, F. Pothier, T. Hoang, G. Tremblay, S. Brownstein, A. Liszaur, and P. Jolicoeur (1989). Transgenic mice carrying the mouse mammary tumor virus ras fusion gene: Distinct effects in various tissues. Mol. Cell. Biol. 9:854–859.Google Scholar
  55. 55.
    J. Irigoyen, D. Besser, and Y. Nagamine (1997). Cytoskeleton reorganization induces the urokinase-type plasminogen activator gene via the Ras/Extracellular signal-regulated kinase (ERK) signaling pathway. J. Biol. Chem. 272:1904–1909.Google Scholar
  56. 56.
    E. Lengyel, H. Wang, R. Gum, C. Simon, Y. Wang, and D. Boyd (1997). Elevated urokinase-type plasminogen activator receptor expression in a colon cancer cell line is due to a constitutively activated extracellular signal-regulated kinase-1-dependent signaling cascade. Oncogene 14:2563–2573.Google Scholar
  57. 57.
    J. Ye, R. Xu, J. Taylor-Papadimitriou, and P. Pitha (1996). Sp1 binding plays a critical role in Erb-B2-and v-ras-mediated downregulation of α2-integrin expression in human mammary epithelial cells. Mol. Cell. Biol. 16:6178–6189.Google Scholar
  58. 58.
    C. T. Guy, M. A. Webster, M. Schaller, T. J. Parson, R. D. Cardiff, and W. J. Muller (1992). Expression of the neu proto-oncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl. Acad. Sci. U.S.A. 89:10578–10582.Google Scholar
  59. 59.
    C. T. Guy, R. D. Cardiff, and W. J. Muller (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. Mol. Cell. Biol. 12:954–961.Google Scholar
  60. 60.
    R. Ben-Levy, H. F. Paterson, C. J. Marshall, and Y. Yarden (1994). A single autophosphorylation site confers oncogenicity to the Neu/erbB-2 receptor and enables coupling to the MAP kinase pathway. EMBO J. 13:3302–3311.Google Scholar
  61. 61.
    D. Dankort, Z. Wang, V. Blackmore, M. Moran, and W. Muller (1997). Distinct tyrosine autophosphorylation sites negatively and positively modulate neu-mediated transformation. Mol. Cell. Biol. 17:5410–5425.Google Scholar
  62. 62.
    R. Fiddes, P. Janes, S. Sivertsen, R. Sutherland, E. Musgrove, and R. Daly (1998). Inhibition of the MAP kinase cascade blocks heregulin-induced cell cycle progression in T-47D human breast cancer cells. Oncogene 16:2803–2813.Google Scholar
  63. 63.
    L. Stevenson, K. Ravichandran, and A. Frackelton (1999). Shc dominant negative disrupts cell cycle progression on both GO-G1 and G2-M of ErbB2-positive breast cancer cells. Cell Growth Differ. 10:61–71.Google Scholar
  64. 64.
    A. Tari, M.-C. Hung, K. Li, and G. Lopez-Berestein (1999). Growth inhibition of breast cancer cells by Grb2 downregulation is correlated with inactivation of mitogen-activated protein kinase in EGFR, but not in ErbB2, cells. Oncogene 18:1325–1332.Google Scholar
  65. 65.
    M. Holgado-Madruga, D. Emlet, D. Moscatello, A. Godwin, and A. Wong (1996). A Grb2-associated docking protein in EGF-and insulin-receptor signalling. Nature 379:560–564.Google Scholar
  66. 66.
    M. Webster, J. Hutchinson, M. Rauh, S. Muthuswamy, M. Anton, C. Tortorice, R. Cardiff, F. Graham, J. Hassell, and W. Muller (1998). Requirement for both Shc and phosphatidylinositol 3′ kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol. Cell. Biol. 18:2344–2359.Google Scholar
  67. 67.
    A. Cheng, T. Saxton, R. Sakai, S. Kulkarni, G. Mbamalu, W. Vogel, C. Tortorice, R. Cardiff, J. Cross, W. Muller, and T. Pawson (1998). Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95:793–803.Google Scholar
  68. 68.
    T. Goi, M. Shipitsin, Z. Lu, D. Foster, S. Klinz, and L. Feig (2000). An EGF receptor/Ral-GTPase signaling cascade regulates c-Src activity and substrate specificity. EMBO J. 19:623–630.Google Scholar
  69. 69.
    P. Keely, J. Westwick, I. Whitehead, C. Der, and L. Parise (1997). Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 390:632–636.Google Scholar
  70. 70.
    P. Norgaard, B. Law, H. Joseph, D. Page, Y. Shyr, D. Mays, J. Pietenpol, N. Kohl, A. Oliff, R. Coffey, H. Skovgaard Poulsen, and H. Moses (1999). Treatment with farnesyl-protein transferase inhibitor induces regression of mammary tumors in transforming growth factor (TGF)α and TGFα/neu transgenic mice by inhibition of mitogenic activity and induction of apoptosis. Clin. Cancer Res. 5:35–42.Google Scholar
  71. 71.
    K. Itoh, K. Yoshioka, H. Akedo, M. Uehata, T. Ishizaki, and S. Narumiya (1999). An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nature Med. 5:221–225.Google Scholar
  72. 72.
    R. J. Daly (1999). Take your partners, please—signal diversification by the erbB family of receptor tyrosine kinases. Growth Factors 16:255–263.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  1. 1.Cancer Research ProgramGarvan Institute of Medical ResearchSydneyAustralia

Personalised recommendations