IGF and Insulin Action in the Mammary Gland: Lessons from Transgenic and Knockout Models

  • Darryl L. Hadsell
  • Sharon G. Bonnette
Article

Abstract

Transgenic and knockout mice have become valuable experimental systems with which tostudy specific molecular events within the mammary gland of an intact animal. These modelshave provided a wealth of information about the effects of a number of oncogenes and growthfactors. This review focuses on results obtained from the application of transgenic and knockoutmodels to determine the roles of insulin and insulin-like growth factors (IGF)3 in the regulationof mammary gland development, lactation and tumorigenesis. Transgenic models whichoverexpress IGF-I or -II display specific alterations in mammary gland development and an increasedincidence of mammary tumors. Analysis of mammary gland development in knockout micewhich are deficient in IGF-I or the IGF-I receptor supports the conclusion that the IGF systemis important for normal mammary gland development. This review discusses these observationsin detail and attempts to fit them into a larger picture of IGF and insulin action in themammary gland.

Insulin transgenic knockout mammary IGF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. M. Rosen, S. L. Wyszomierski, and D. L. Hadsell (1999). Regulation of milk protein gene expression. Ann. Rev. Nutr. 19:407–436.Google Scholar
  2. 2.
    A. V. Lee, S. G. Hilsnebeck, and D. Yee (1998). IGF system components as prognostic markers in breast cancer. Breast Cancer Res. Treat. 47:295–302.Google Scholar
  3. 3.
    C. L. Arteaga (1992). Interference of the IGF system as a strategy to inhibit breast cancer growth. Breast Cancer Res. Treat. 22:101–106.Google Scholar
  4. 4.
    B. C. Turner, B. G. Haffty, L. Narayanan, J. Yuan, P. A. Havre, A. A. Gumbs, L. Kaplan, J. L. Burgaud, D. Carter, R. Baserga, and P. M. Glazer (1997). Insulin-like growth factor-I receptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res. 57:3079–3083.Google Scholar
  5. 5.
    B. Lamothe, A. Baudry, P. Desbois, L. Lamotte, D. Bucchini, P. DeMeyts, and R. L. Joshi (1999). Genetic engineering in mice: Impact on insulin signaling and action. Biochem J. 335:193–204.Google Scholar
  6. 6.
    D. R. Clemmons (1997). Insulin-like growth factor binding proteins and their role in controlling IGF actions. Cytokine Growth Factor Rev. 8:45–62.Google Scholar
  7. 7.
    H. S. Kim, S. R. Nagalla, Y. Oh, E. Wilson, C. T. Roberts, Jr. and R. G. Rosenfeld (1997). Identification of a family of low-affinity insulin-like growth factor binding proteins (IGFBPs): Characterization of connective tissue growth factor as a member of the IGFBP superfamily. Proc. Natl. Acad. Sci. U.S.A. 94:12981–12986.Google Scholar
  8. 8.
    Y. Yamanaka, E. M. Wilson, R. G. Rosenfeld, and Y. Oh (1997). Inhibition of insulin receptor activation by insulin-like growth factor binding proteins. J. Biol. Chem. 272:30729–30734.Google Scholar
  9. 9.
    F. Frasca, G. Pandini, P. Scalia, L. Sciacca, R. Mineo, A. Costantino, I. D. Goldfine, A. Belfiore, and R. Vigneri (1999). Insulin receptor isoform A, a newly recognized high affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol. Cell. Biol. 19:3278–3288.Google Scholar
  10. 10.
    D. LeRoith, H. Werner, D. Beitner-Johnson, and C. T. Roberts, Jr. (1995). Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocrine Rev. 16:143–163.Google Scholar
  11. 11.
    E. M. Bailyes, B. T. Navé, M. A. Soos, S. R. Orr, A. C. Hayward, and K. Siddle (1997). Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: Quantification of individual receptor species by selective immunoprecipitation and immunoblotting. Biochem. J. 327:209–215.Google Scholar
  12. 12.
    R. Lammers, A. Gray, J. Schlessinger, and A. Ullrich (1989). Differential signaling potential of insulin-and IGF-1-receptor cytoplasmic domains. EMBO 8:1369–1375.Google Scholar
  13. 13.
    M. Kaleko, W. J. Rutter, and D. Miller (1990). Overexpression of the human insulin-like growth factor I receptor promotes ligand dependent neoplastic transformation. Mol. Cell. Biol. 10:464–473.Google Scholar
  14. 14.
    F. Giorgino, A. Belfiore, G. Milazzo, A. Costantino, B. Maddux, J. Whittaker, I. D. Goldfine, and R. Vigneri (1991). Overexpression of insulin receptors in fibroblast and ovary cells induces a ligand-mediated transformed phenotype. Mol. Endocrinol. 5:452–459.Google Scholar
  15. 15.
    L. Frittitta, R. Vigneri, M. R. Stampfer, and I. D. Goldfine (1995). Insulin receptor overexpression in 184B5 human mammary epithelial cells induces a ligand-dependent transformed phenotype. J. Cell. Biochem. 57:666–669.Google Scholar
  16. 16.
    A. M. Geier, R. Haimsohn, R. Beery, R. Hemi, and B. Lunenfeld (1992). Insulin-like growth factor I inhibits cell death induced by cycloheximide in MCF-7 cells: A model for analyzing control of cell death. In Vitro Cell. Dev. Biol. 28A:725–729.Google Scholar
  17. 17.
    C. G. Prosser, L. Sankaran, L. Hennighausen, and Y. J. Topper (1987). Comparison of the roles of insulin and insulin-like growth factor I in casein gene expression and in the development of alpha-lactalbumin and glucose transport activities in the mouse mammary epithelial cell. Endocrinology 120: 1411–1416.Google Scholar
  18. 18.
    A. Virkamäki, K. Ueki and C. R. Kahn (1999). Protein-protein interactions in insulin signaling and the molecular mechanisms of insulin resistance. J. Clin. Invest. 103:931–943.Google Scholar
  19. 19.
    R. Rubin and R. Baserga (1995). Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis, and tumorigenicity. Lab. Invest. 73:311–331.Google Scholar
  20. 20.
    D. Beitner-Johnson, V. A. Blakesley, Z. Shen-Orr, M. Jimenez, B. Stannard, L. M. Wang, J. Pierce, and D. LeRoith (1996). The proto-oncogene product c-Crk associates with insulin receptor substrate-1 and 4PS. Modulation by insulin growth factor-I (IGF) and enhanced IGF-I signaling. J. Biol. Chem. 271: 9287–9290.Google Scholar
  21. 21.
    R.W. Furlanetto, B. R. Dey, W. Lopaczynski, and S. P. Nissley (1997). 14–3–3 proteins interact with the insulin-like growth factor receptor but not the insulin receptor. Biochem. J. 327:765–771.Google Scholar
  22. 22.
    G. Dumenil, M. Rubini, G. Dubois, R. Baserga, M. Fellous, and S. Pellegrini (1997). Identification of signaling components in tyrosine kinase cascades using phosphopeptide affinity chromatography. Biochem. Biophys. Res. Commun. 234:748–753.Google Scholar
  23. 23.
    R. O'Connor, A. Kauffmann-Zeh, Y. Liu, S. Lehar, G. I. Evan, R. Baserga, and W. A. Blattler (1997). Identification of domains of the insulin-like growth factor I receptor that are required for protection from apoptosis. Mol. Cell. Biol. 17:427–435.Google Scholar
  24. 24.
    G. Romano, M. Prisco, T. Zanocco-Marani, F. Peruzzi, B. Valentinis, and R. Baserga (1999). Dissociation between resistance to apoptosis and the transformed phenotype in IGF-I receptor signaling. J. Cell. Biochem. 72:294–310.Google Scholar
  25. 25.
    W. He, D.W. Rose, J. M. Olefsky, and T. A. Gustafson (1998). Grb10 interacts differentially with the insulin receptor, insulin-like growth factor I receptor, and epidermal growth factor receptor via the grb10 src homology 2 (SH2) domain and a second novel domain located between the pleckstrin homology and SH2 domains. J. Biol. Chem. 273:6860–6867.Google Scholar
  26. 26.
    D. L. Kleinberg (1998). Role of IGF-I in normal mammary development. Breast Cancer Res. Treat. 47:201–208.Google Scholar
  27. 27.
    M. M. Richert and T. L. Wood (1999). The insulin-like growth factors and IGF type I receptor during postnatal growth of the murine mammary gland: Sites of mRNA expression and potential functions. Endocrinology 140:454–461.Google Scholar
  28. 28.
    M. S. Weber, P. L. Boyle, B. A. Corl, E. A. Wong, F. C. Gwazdauskas, and R. M. Akers (1998). Expression of ovine insulin-like growth factor-1 (IGF-1) stimulates alveolar bud development in mammary glands of transgenic mice. Endocrine 8:251–259.Google Scholar
  29. 29.
    W. Ruan, C. B. Newman, and D. L. Kleinberg (1992). Intact and aminoterminally shortened forms of insulin-like growth factor I induce mammary gland differentiation and development. Proc. Natl. Acad. Sci. U.S.A. 89:10872–10876.Google Scholar
  30. 30.
    D. L. Kleinberg, M. Feldman, and W. Ruan (2000). IGF-I: An essential factor in terminal end bud formation and ductal morphogenesis. J. Mam. Gland Biol. Neoplasia 5: xx–xx.Google Scholar
  31. 31.
    R. G. Richards and R. P. DiAugustine (1999). Insulin-like growth factor (IGF)-I and mammary ductal development. Mutant mouse models that target the growth hormone-IGF-I axis. Progr. Abstr. 81st Ann. Meeting of the Endocrine Society (Abstract):168Google Scholar
  32. 32.
    D. L. Hadsell, N. M. Greenberg, J. M. Fligger, C. R. Baumrucker, and J. M. Rosen (1996). Targeted expression of factordes( 1–3) human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology 137:321–330.Google Scholar
  33. 33.
    S. Neuenschwander, A. Schwartz, T. L. Wood, C. T. Roberts, Jr., L. Hennighausen, and D. LeRoith (1996). Involution of the lactating mammary gland is inhibited by the IGF system in a transgenic mouse model. J. Clin. Invest. 97:2225–2232.Google Scholar
  34. 34.
    D. L. Hadsell, K. L. Murphy, N. Reece, T. Alexeenko, R. Laucirica, and J. M. Rosen (1999). Cooperation between des(1–3)IGF-I and mutant p53 accelerates mammary gland carcinogenesis in bigenic mice. Progr. Abstr. 81st Ann. Meeting of the Endocrine Society (Abstract):477Google Scholar
  35. 35.
    P. Chomczynski, P. Qasba, and Y. J. Topper (1984). Essential role of insulin in transcription of the rat 25,000 molecular weight casein gene. Science 226:1326–1328.Google Scholar
  36. 36.
    C. G. Prosser, C. Royle, I. R. Fleet, and T. B. Mepham (1991). The galactopoietic effect of bovine growth hormone in goats is associated with increased concentrations of insulin-like growth factor-I in milk and mammary tissue. J. Endocrinol. 128: 457–463.Google Scholar
  37. 37.
    C. G. Prosser, I. R. Fleet, A. N. Corps, E. R. Froesch, and R. B. Heap (1990). Increase in milk secretion and mammary blood flow by intra-arterial infusion of insulin-like growth factor-I into the mammary gland of the goat. J. Endocrinol. 126:437–443.Google Scholar
  38. 38.
    C. G. Prosser, S. R. Davis, V. C. Farr, L. G. Moore, and P. D. Gluckman (1994). Effects of close-arterial (external pudic) infusion of insulin-like growth factor-II on milk yield and mammary blood flow in lactating goats. J. Endocrinol. 142:93–99.Google Scholar
  39. 39.
    S. R. Davis, P. D. Gluckman, S. C. Hodgkinson, V. C. Farr, B. H. Breier, and B. D. Burleigh (1989). Comparison of the effects of administration of recombinant bovine growth hor-mone or N-met insulin-like growth factor-I to lactating goats. J. Endocrinol. 123:33–39.Google Scholar
  40. 40.
    D. J. Flint, E. Tonner, J. Beattie, and D. Panton (1992). Investigation of the mechanism of action of growth hormone in stimulating lactation in the rat. J. Endocrinol. 134:377–383.Google Scholar
  41. 41.
    E. Wolf, P. M. Jehle, M. M. Weber, H. Sauerwein, A. Daxenlike berger, B. H. Breier, U. Besenfelder, L. Frenyo, and G. Brem (1997). Human insulin-like growth factor I (IGF-I) produced in the mammary glands of transgenic rabbits: Yield, receptor binding, mitogenic activity, and effects on IGF-binding proteins. Endocrinology 138:307–313.Google Scholar
  42. 42.
    D. G. Burrin, M. L. Fiorotto, and D. L. Hadsell (1999). Transgenic hypersecretion of des(1–3)human insulin-like growth factor I in mouse milk has limited effects on the gastrothe intestinal tract in suckling pups. J. Nutr. 129:51–56.Google Scholar
  43. 43.
    P. A. Furth (1999). Mammary gland involution and apoptosis of mammary epithelial cells. J. Mam. Gland Biol. Neoplasia 4:123–127.Google Scholar
  44. 44.
    L. R. Lund, J. Romer, N. Thomasset, H. Solberg, C. Pyke, M. J. Bissell, K. Dano, and Z. Werb (1996). Two distinct phases of apoptosis in mammary gland involution:Proteinase-independent and-dependent pathways. Development 122:181–193.Google Scholar
  45. 45.
    L. H. Quarrie, C.V. Addey, and C. J. Wilde (1996). Programmed cell death during mammary tissue involution induced by wean-ing, litter removal, and milk stasis. J. Cell. Physiol. 168:559–569.Google Scholar
  46. 46.
    A. Marti, Z. Feng, H. J. Altermatt, and R. Jaggi (1997). Milk accumulation triggers apoptosis of mammary epithelial cells. Eur. J. Cell. Biol. 73:158–165.Google Scholar
  47. 47.
    A. F. Burnol, A. Leturque, P. Ferré, J. Kande, and J. Girard (1986). Increased insulin sensitivity and responsiveness during lactation in rats. Am. J. Physiol. 251:537–541.Google Scholar
  48. 48.
    E. Tonner, M. C. Barber, M. T. Travers, A. Logan, and D. J. Flint (1997). Hormonal control of insulin-like growth factordes( binding protein-5 production in the involuting mammary gland of the rat. Endocrinology 138:5101–5107.Google Scholar
  49. 49.
    D. J. Flint, E. Tonner, and G. J. Allan (2000). Insulin-like growth factor binding proteins: IGF-dependent and-independent effects in the mammary gland: J. Mam. Gland Biol. Neoplasia 5: xx–xx.Google Scholar
  50. 50.
    N. Farrelly, Y. J. Lee, J. Oliver, C. Dive, and C. H. Streuli (1999). Extracellular matrix regulates apoptosis in mammary epithelium through a control on insulin signaling. J. Cell Biol. 144:1337–1347.Google Scholar
  51. 51.
    Z. Feng, A. Marti, B. Jehn, H. J. Altermatt, G. Chicaiza, and R. Jaggi (1995). Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J. Cell Biol. 131:1095–1103.Google Scholar
  52. 52.
    F. J. Ballard, S. E. Knowles, P. E. Walton, K. Edson, P. C. Owens, M. A. Mohler, and B. L. Ferraiolo (1991). Plasma clearance and tissue distribution of labelled insulin-like growth factor-I (IGF-I), IGF-II and des(1–3)IGF-I in rats. J. Endocrinol. 128:197–204.Google Scholar
  53. 53.
    R. Baserga, C. Sell, P. Porcu, and M. Rubini (1994). The role of the IGF-I receptor in growth and transformation of mammalian cells. Cell. Prolif. 27:63–71.Google Scholar
  54. 54.
    C. L. Arteaga, L. J. Kitten, E. B. Coronado, S. Jacobs, F. C. J. Kull, D. C. Allred, and C. K. Osborne (1989). Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J. Clin. Invest. 84: 1418–1423.Google Scholar
  55. 55.
    S. E. Dunn, M. Ehrlich, N. J. Sharp, K. Reiss, G. Solomon, R. Hawkins, R. Baserga, and J. C. Barrett (1998). A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res. 58:3353–3361.Google Scholar
  56. 56.
    M. Resnicoff, D. Ambrose, D. Coppola, and R. Rubin (1993). Insulin-like growth factor-1 and its receptor mediate the autocrine proliferation of human ovarian carcinoma cell lines. Lab. Invest. 69:756–760.Google Scholar
  57. 57.
    P. Bates, R. Fisher, A. Ward, L. Richardson, D. J. Hill, and C. F. Graham (1996). Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II). Brit. J. Cancer 72:1189–1193.Google Scholar
  58. 58.
    D. D. Pravtcheva and T. L. Wise (1999). Metastasizing mammary carcinomas in H19 enhancers-Igf2 transgenic mice. J. Exp. Zool. 281:43–57.Google Scholar
  59. 59.
    T. Dunn (1959). Morphology of mammary tumors in mice. In F. Homburger (ed.), Physiopathology of Cancer, A. J. Phiebig, New York, pp.38–83.Google Scholar
  60. 60.
    X. J. Wang, D. A. Greenhalgh, A. Jiang, H. Dacheng, L. Zhong, B. R. Brinkley, and D. R. Roop (1999). Analysis of centrosome abnormalities and angiogenesis in epidermal-targeted p53172H mutant and p53-knockout mice after chemical carcinogenesis: Evidence for a gain of function. Mol. Carcinogen. 23:185–192.Google Scholar
  61. 61.
    D. K. Bol K. Kiguchi, I. Gimenez-Conti, T. Rupp, and J. DiGiovanni (1997). Overexpression of insulin-like growth factor-1 induces hyperplasia, dermal abnormalities, and spontaneous tumor formation in transgenic mice. Oncogene 14: 1725–1734.Google Scholar
  62. 62.
    C. E. Rogler, D. Yang, L. Rossetti, J. Donohoe, E. Alt, C. J. Chang, R. Rosenfeld, K. Neely, and R. Hintz (1994). Altered body composition and increased frequency of diverse malignancies in insulin-like growth factor-II transgenic mice. J. Biol. Chem. 269:13779–13784.Google Scholar
  63. 63.
    J. Petrik, J. M. Pell, E. Arany, T. J. McDonald, W. L. Dean, and D. J. Hill (1999). Overexpression of insulin-like growth factor-II in transgenic mice is associated with pancreatic islet cell hyperplasia. Endocrinology 140:2353–2363.Google Scholar
  64. 64.
    M. M. Weber, C. Fottner, P. Schmidt, K. M. Brodowski, K. Gittner, H. Lahm, D. Englehardt, and E. Wolf (1999). Postna-autotal overexpression of insulin-like growth factor II in transgenic mice is associated with adrenocortical hyperplasia and enhanced steroidogenesis. Endocrinology 140:2353–2363.Google Scholar
  65. 65.
    G. Christofori, P. Naik, and D. Hanahan (1994). A second signal supplied by insulin-like growth factor II in oncogeneexpressing induced tumorigenesis. Nature 369:414–418.Google Scholar
  66. 66.
    L. Frittitta, A. Cerrato, M. G. Sacco, N. Weidner, I. D. Goldfine, and R. Vigneri (1997). The insulin receptor content is increased in breast cancers initiated by three different oncogenes in transgenic mice. Breast Cancer Res. Treat. 45:141–147.Google Scholar
  67. 67.
    L. Sciacca, A. Costantino, G. Pandini, R. Mineo, F. Frasca, P. Scalia, P. Sbraccia, and I. D. Goldfine (1999). Insulin receptor activation by IGF-II in breast cancers: Evidence for a new autocrine/paracrine mechanism. Oncogene 18:2471–2479.Google Scholar
  68. 68.
    L. Zhang, M. Kim, Y. H. Choi, B. Goemans, C. Yeung, C. Y. Hu, S. Zhan, P. Seth, and L. J. Helman (1999). Diminished G1 checkpoint after g-irradiation and altered cell cycle regulation by insulin-like growth factor II overexpression. J. Biol. Chem. 274:13118–13126.Google Scholar
  69. 69.
    J. J. Wysolmerski, J. F. McCaughern-Carucci, A. G. Daifotis, A. E. Broadus, and W. M. Philbrick (1995). Overexpression of parathyroid hormone-related protein or parathyroid hormone in transgenic mice impairs branching morphogenesis during mammary gland development. Development 121:3539–3547.Google Scholar
  70. 70.
    D. No, T. P. Yao, and R. M. Evans (1996). Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 93:3346–3651.Google Scholar
  71. 71.
    D. Ewald, M. Li, S. Efrat, G. Auer, R. J. Wall, P. Furth, and L. Hennighausen (1996). Time-sensitive reversal of hyperplasia in transgenic mice expressing SV40 T antigen. Science 273: 1384–1386.Google Scholar
  72. 72.
    Y. Wang, F. J. DeMayo, S. Y. Tsai, and B.W. O'Malley (1997). Ligand-inducible and liver-specific target gene expression in transgenic mice. Nature Biotechnol. 15:239–243.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Darryl L. Hadsell
    • 1
    • 2
  • Sharon G. Bonnette
    • 1
  1. 1.USDA/ARS Children's Nutrition Research Center, Department of PediatricsBaylor College of MedicineHouston
  2. 2.USDA/ARS Children's Nutrition Research CenterHouston

Personalised recommendations