Resonant Frequency Biofeedback Training to Increase Cardiac Variability: Rationale and Manual for Training
- 1.4k Downloads
- 190 Citations
Abstract
Heart rate and blood pressure, as well as other physiological systems, among healthy people, show a complex pattern of variability, characterized by multifrequency oscillations. There is evidence that these oscillations reflect the activity of homeostatic reflexes. Biofeedback training to increase the amplitude of respiratory sinus arrhythmia (RSA) maximally increases the amplitude of heart rate oscillations only at approximately 0.1 Hz. To perform this task people slow their breathing to this rate to a point where resonance occurs between respiratory-induced oscillations (RSA) and oscillations that naturally occur at this rate, probably triggered in part by baroreflex activity. We hypothesize that this type of biofeedback exercises the baroreflexes, and renders them more efficient. A manual is presented for carrying out this method. Supporting data are provided in Lehrer, Smetankin, and Potapova (2000) in this issue.
Preview
Unable to display preview. Download preview PDF.
REFERENCES
- Asmundson, G. J. G., & Stein, M. B. (1994). Vagal attenuation in panic disorder: An assessment of parasympathetic nervous system function and subjective reactivity to respiratory manipulations. Psychosomatic Medicine, 56, 187–193.Google Scholar
- Bai, C. X. (1991). Application of pursed lips breathing to chronic obstructive pulmonary disease patients with respiratory insufficiency. Chinese Journal of Tuberculosis and Respiratory Disease, 14, 283–284.Google Scholar
- Bernardi, L., Leuzzi, S., Radaelli, A., Passino, C., Johnston, J. A., & Sleight, P. (1994). Low frequency spontaneous fluctuations of R-R interval and blood pressure in conscious humans: A baroreceptor or central phenomenon? Clinical Science, 87, 647–654.Google Scholar
- Berntson, G. G., Bigger, J. T., Jr., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., Stone, P. H., & van der Molen, M. W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623–648.Google Scholar
- Binder, T., Frey, B., Porenta, G., Heinz, G., Wutte, M., Kreiner, G., Grossinger, H., Schmidinger, H., Pacher, R., & Weber, H. (1992). Prognostic value of heart rate variability in patients awaiting cardiac transplantation. Pacing and Clinical Electrophysiology, 15, 2215–2220.Google Scholar
- Chernigovskaya, N. V., Vaschillo, E. G., Rusanovsky, B. B., & Kashkarova, O. E. (1990). Instrumental autotraining of mechanisms for cardiovascular function regulation in treatment of neurotics [Russian]. The SS Korsakov's Journal of Neuropathology and Psychiatry, 90, 24–28.Google Scholar
- De Meersman, R. E. (1993). Aging as a modulator of respiratory sinus arrhythmia. Journal of Gerontology, 48, B74.Google Scholar
- Giardino, N. D., Lehrer, P. M., & Feldman, J. M. (2000). The Role of Oscillations in Self-Regulation: A Revision of the Classical Model of Homeostasis. In D. Kenny, J. G. Carlson, F. J. McGuigan, & J. L. Sheppard (Eds). Stress and health: Research and clinical applications (pp. 27–52). Amsterdam: Harwood.Google Scholar
- Goldberger, A. L. (1991). Is the normal heartbeat chaotic or homeostatic? News in Physiological Science, 6, 87–91.Google Scholar
- Hyundman, B. W. (1973). The role of rhythms in homeostasis. Kybernetic, 15, 227–236.Google Scholar
- Kleiger, R. E., Miller, J. P., Bigger, J. T., & Moss, A. J. (1987). Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. American Journal of Cardiology, 59, 256–262.Google Scholar
- Laitinen, T., Hartikainen, J., Niskanen, L., Geelen, G., & Länsimies, E. (1999). Sympathovagal balance is a major determinant of short-term blood pressure variability in healthy subjects. American Journal of Physiology, 276, H1245.Google Scholar
- Lehrer, P. M., Carr, R. E., Smetankine, A., Vaschillo, E., Peper, E., Porges, S., Edelberg, R., Hamer, R., & Hochron, S. (1997). Respiratory sinus arrhythmia versus neck/trapezius EMG and incentive inspirometry biofeedback for asthma: A pilot study. Applied Psychophysiology and Biofeedback, 22, 95–109.Google Scholar
- Lehrer, P., Smetankin, A., & Potapova, T. (2000). Respiratory sinus arrhythmia biofeedback therapy for asthma: A report of 20 unmedicated pediatric cases using the Smetankin method. Applied Psychophysiology and Biofeedback, this issue.Google Scholar
- Lehrer, P. M., Sasaki, Y., & Saito, Y. (1999). Zazen and cardiac variability. Psychosomatic Medicine, 61, 812–821.Google Scholar
- Mancia, G., Giannattasio, C., Turrini, D., Grassi, G., & Omboni, S. (1995). Structural cardiovascular alterations and blood pressure variability in human hypertension. Journal of Hypertension—Supplement, 13, S7–S14.Google Scholar
- Peng, C. K., Buldyrev, S. V., Hausdorff, J. M., Havlin, S., Mietus, J. E., Simons, M., Stanley, H. E., & Goldberger, A. L. (1996). Non-equilibrium dynamics as an indispensable characteristic of a healthy biological system. Integrative Physiological and Behavioral Science, 29, 283–293.Google Scholar
- Pitzalis, M. V., Passantino, A., Massari, F., Forleo, C., Balducci, C., Santoro, G., Mastropasqua, F., Antonelli, G., & Rizzon, P. (1999). Diastolic dysfunction and baroreflex sensitivity in hypertension. Hypertension, 33, 1141–1145.Google Scholar
- Porges, S. W. (1986). Respiratory sinus arrhythmia: Physiological basis, quantitative methods, and clinical implications. In Grossman, P., Janssen, K., & Vaitl, D. (Eds.), Cardiorespiratory and Cardiosomatic Psychophysiology (pp. 101–115). New York: Plenum Press.Google Scholar
- Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A Polyvagal Theory. Psychophysiology, 32, 301–318.Google Scholar
- Rich, M. W., Saini, J. S., Kleiger, R. E., Carney, R. M., te Velde, A., & Freeland, K. E. (1988). Correlation of heart rate variability with clinical and angiographic variables and late mortality after coronary angiography. American Journal of Cardiology, 62, 714–717.Google Scholar
- Rosenbaum, D. S., Jackson, L. E., Smith, J. M., Garan, H., Ruskin, J. N., & Cohen, R. J. (1994). Electrical alterans and vulnerability to ventricular arrhythmia. New England Journal of Medicine, 330, 235–241.Google Scholar
- Taylor, J. A., & Eckberg, D. L. (1996). Fundamental relations between short-term RR interval and arterial pressure oscillations in humans. Circulation, 93, 1527–1532.Google Scholar
- Vaschillo, E. G. (1984). Dynamics of slow-wave cardiac rhythm structure as an index of the functional state of an operant. Unpublished Ph.D. dissertation, Leningrad State University, Russia.Google Scholar
- Vaschillo, E., Lehrer, P., Rishe, N., & Konstantinov, M. (Submitted for publication). Voluntary control of slow-wave heart rhythm structure: Frequency analysis of the cardiovascular system.Google Scholar
- Vein, A. M, Oknin, V. I., Khaspekova, N. B., & Fedotova, A. V. (1998). State of autonomic regulation mechanisms in arterial hypotension. [Russian] Zhurnal Nevrologii i Psikhiatrii Imeni S. S. Korsakova, 98, 20–24.Google Scholar
- Zingerman, A. M., Nikitina, S. B., & Nikiforova, O. V. (1994). Alternative biocontrol as a psychophysiological mechanism of functional adaptive self-regulation. Physiology Journal named after IM Sechenov, 80, 4–49.Google Scholar