Advertisement

Journal of Mathematical Sciences

, Volume 103, Issue 6, pp 709–724 | Cite as

Coincidence of Generic Relative Minimum Singularities in Problems with Explicit and Implicit Constraints

  • A. A. Davydov
  • V. M. Zakalyukin
Article
  • 21 Downloads

Keywords

Minimum Singularity Relative Minimum Implicit Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. I. Arnold, “Singularities in the calculus ofv ariations, ” In: Progress in Science and Technology, Series on Contemporary Problems in Mathematics [in Russian], Vol. 22, All-Union Institute for Scientific and Technical Information, Akad. Nauk SSSR, Moscow (1983), pp. 3–55.Google Scholar
  2. 2.
    V. I. Arnold, Catastrophe Theory [in Russian], Nauka, Moscow (1990).Google Scholar
  3. 3.
    V. I. Arnold, V. V. Goryunov, O. V. Lyashko, and V. A. Vassiliev, “Singularities. II. Classiffcation and applications, ” In: Encyclopaedia of Mathematical Sciences, Vol. 39, Dynamical Systems-8, Springer-Verlag, Berlin (1993).Google Scholar
  4. 4.
    V. I. Arnold, A. N. Varchenko, and S. M. Gusein-Zade, Singularities of Differentiable Mappings, Vol. 1, Monographs in Mathematics, 82, Birkhäuser, Boston (1985).Google Scholar
  5. 5.
    L. N. Brysgalova, “Singularities ofm aximum function, depending on parameters, ” Funct. Anal. Appl., 11, No. 1, 59–60 (1978).Google Scholar
  6. 6.
    L. N. Brysgalova, “On maximum function of family of functions, ” Funct. Anal. Appl., 12, No. 1, 66–67 (1978).Google Scholar
  7. 7.
    J. Damon, “The unfolding and determinacy theorems for subgroups of U and K, ” Mem. Amer. Math. Soc., 50, No. 306 (1984).Google Scholar
  8. 8.
    A. A. Davydov, “Singularities ofthe maximum function over the preimage, ” In: Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publications, Vol. 32 (1995), pp. 167–181.Google Scholar
  9. 9.
    A. A. Davydov, “Local controllability ofg eneric dynamic inequalities on surfaces, ” Tr. M at. Inst. Rossiisk. Akad. Nauk, 209, 84–123 (1995).Google Scholar
  10. 10.
    A. A. Davydov and V. M. Zakalyukin, “Point singularities ofre lative minimum on three-dimensional manifolds, ” Tr. Mat. Inst. Rossiisk. Akad. Nauk, 220, 113–129 (1998).Google Scholar
  11. 11.
    A. A. Davydov and V. M. Zakalyukin, “Classiffication ofr elative minima singularities” (in press).Google Scholar
  12. 12.
    M. J. Dias Carneiro, “Singularities of envelopes of families of submanifolds in Rn, ” Ann. Sci. Ecole. Norm. Sup., 4e Serie, 16, 173–192 (1983).Google Scholar
  13. 13.
    J. P. Dufour, “Sur la stabilite de diagrams d'applications differentiables, ” Ann. Sci. Ecole. Norm. Super., 10, No. 2, 153–174 (1977).Google Scholar
  14. 14.
    J. P. Dufour and J. P. Tueno, “Singularities and photographs of surfaces, ” Geometry and Physics (1992).Google Scholar
  15. 15.
    A. B. Givental, “Singular Lagrangian varieties and their Lagrangian mappings, ” In: Progress in Science and Technology, Series on Contemporary Problems in Mathematics, Latest Achievments [in Russian], Vol. 33, All-Union Institute for Scientific and Technical Information, Akad. Nauk SSSR, Moscow (1988), pp. 55–112.Google Scholar
  16. 16.
    V. V. Goryunov, “Geometry ofb ifurcation diagrams of simple projections onto the line, ” Funct. Anal. Appl., 15, No. 2, 77–82 (1981).Google Scholar
  17. 17.
    V. V. Goryunov, “Projections ofg eneric surfaces with boundaries, ” Adv. Sov. Math., 1, 157–200 (1990).Google Scholar
  18. 18.
    M. E. Kazarian, “Singularities ofthe boundary off undamental systems, flattenings of projective lines and Shubert cells, ” In: Progress in Science and Technology, Series on Contemporary Problems in Mathematics, Latest Achievements [in Russian], Vol. 33, All-Union Institute for Scientific and Technical Information, Akad. Nauk SSSR, Moscow (1988), pp. 215–231.Google Scholar
  19. 19.
    O. V. Lyashko, “Function critical point classification on a manifold with singular boundary, ” Funct. Anal. Appl., 17, No. 3, 28–36 (1983).Google Scholar
  20. 20.
    V. I. Matov, “Topological classification ofge neric maximum and minimax function germs, ” Russian Math. Surveys, 37, No. 4, 167–168 (1982).Google Scholar
  21. 21.
    B. Morin, “Formes canoniques des singularites d'une application differentiable, ” C. R. Acad. Sci., Ser. 1, 260, 5662–5665, 6503–6506 (1965).Google Scholar
  22. 22.
    J. E. H. Petris, “Normalformen für Singularitäten von einparametrigen Flähenscharen, ” Diss. ETN Nr. 9016, Eidgenn¨ossischen Technischen Hochschule Z¨urich (1990).Google Scholar
  23. 23.
    J. P. Tueno, “Determination localle des surfaces a partir de leur representation localle plane ou theorie des singularites des photographies des surfaces eclairees, ” Theses, Montpellier (1989).Google Scholar
  24. 24.
    V. M. Zakalyukin, “Perestroikas off ronts and caustics depending on parameters versality ofm appings, ” In: Progress in Science and Technology, Series on Contemporary Problems in Mathematics, Latest Achievements [in Russian], Vol. 22, All-Union Institute for Scientific and Technical Information, Akad. Nauk SSSR, Moscow (1983), pp. 56–93.Google Scholar
  25. 25.
    V. M. Zakalyukin, “Envelopes of families of wave fronts and control theory, ” Tr. Mat. Inst. Rossiisk. Akad. Nauk, 209, 133–142 (1995).Google Scholar
  26. 26.
    V. M. Zakalyuikin, “Singularities of circles contact with surfaces and flags, ” Funct. Anal. Appl., 31, No. 2, 73–76 (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • A. A. Davydov
  • V. M. Zakalyukin

There are no affiliations available

Personalised recommendations